* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download mechanisms_and_movement
Virtual work wikipedia , lookup
Equations of motion wikipedia , lookup
Centripetal force wikipedia , lookup
Newton's laws of motion wikipedia , lookup
Four-bar linkage wikipedia , lookup
Transmission (mechanics) wikipedia , lookup
Differential (mechanical device) wikipedia , lookup
Engineering Research Engineering Academy Mechanisms and Movement Mechanisms are used to convert between one type of motion and another. Any machine can be looked on as a group of interconnected mechanisms which convert one type of motion to a variety of other motions. These changes may be to convert rotary motion to straight line motion or to convert reciprocal (back and forth) motion to intermittent motion. They may also transform a fixed type of motion, for example by magnifying a linear motion or by slowing down a rotary motion. Motion. A comparison of different types of movement and how to convert between them . Mechanisms. Explanations of basic mechanical movements Compound Mechanisms. How basic mechanical units fit together. Linear motion is the most basic of all motions. Uninterrupted objects will continue to move in a straight line indefinitely. Under every day circumstances gravity and friction conspire to bring objects to rest. Linear motion is measured in two parts. Speed, and direction. Together these make up the velocity. Reciprocating Motion The rack and pinion is used to convert between rotary and linear motion. The rack is the flat, toothed part, the pinion is the gear. Rack and pinion can convert from rotary to linear of from linear to rotary. The diameter of the gear determines the speed that the rack moves as the pinion turns. Rack and pinions are commonly used in the steering system of cars to convert the rotary motion of the steering wheel to the side to side motion in the wheels. Rack and pinion gears give a positive motion especially compared to the friction drive of a wheel in tarmac. In the rack and pinion railway a central rack between the two rails engages with a pinion on the engine allowing the train to be pulled up very steep slopes. The bell crank is used to convert the direction of reciprocating movement. By varying the angle of the crank piece it can be used to change the angle of movement from 1 degree to 180 degrees. The bell crank was originally used in large house to operate the servant’s bell, hence the name. 1|Page Engineering Research Engineering Academy “Jeeves, where’s my tea?!” http://www.flying-pig.co.uk/mechanisms/pages/bellcrank.html Chains are used to connect gears. They work in a similar way to pulleys but with a positive drive rather than a reliance on friction. Gears which are connected by chain turn in the same direction unlike gears which mesh against each other. The crank is used to convert rotary motion to reciprocating or oscillating motion. With careful timing it can also be used to convert motion the other way... from reciprocating to rotary, (see the piston) The throw of the reciprocating motion is determined by the offest of the crank. The crank slider mechanism is the basis of the models Flying Pig and Surfin' the Web. As the crank (yellow) turns the pushrod and slider is moved up and down, the end point tracing out a curved, but not necessarily circular motion. By altering the various dimensions, different motions can obtained, the key distances are Gears are used to change speed in rotational movement. In the example above the blue gear has eleven teeth and the orange gear has twenty five. To turn the orange gear one full turn the blue gear must turn 25/11 or 2.2727r turns. Notice that as the blue gear turns clockwise the orange gear turns anti-clockwise. In the above example the number of teeth on the orange gear is not divisible by the number of teeth on the blue gear. This is deliberate. If the orange gear had thirty three teeth then every three turns of the blue gear the same teeth would mesh together which could cause excessive wear. By using none divisible numbers the same teeth mesh only every seventeen turns of the blue gear. The Geneva stop is named after the Geneva cross, a similar shape to the main part of the mechanism. The Geneva stop is used to provide intermittent motion, the orange wheel turns continuously, the dark blue pin then turns the blue cross quarter of a turn for each revolution of the drive wheel. The crescent shaped cut out in dark orange section lets the points of the cross past, then locks the wheel in place when it is stationary. The Geneva stop mechanism is used commonly in film projectors to move the film on one frame at a time. 2|Page Engineering Research Engineering Academy Levers are an essential part of many mechanisms. They can be used to change the amount, the strength and the direction of movement. The position of the force and the load are interchangeable and by moving them to different points on the lever, different effects can be produced. The fixed point of the lever about which it moves is known as the fulcrum. In this example the force and the load move in opposite directions. With the force three times closer to the fulcrum them the load lifted is only one third of the force but it move three times as far. (Next) © Rob Ives / Flying Pig 2000-2004 Linkages are an essential part of many mechanisms. They can be used to change direction, alter speed and change the timing of moving parts. In this example two linked linkages are used to convert the small linear movement of the drive shaft (bottom left) into first a rotational body movement and secondly a fast hammer movement. Compare the speed of the hammer with the speed of the drive shaft! (next) Pulleys On the left is a simple pulley. As the rope is pulled down the weight moves up by the same distance. In the compound pulley on the right the rope is wrapped around two pulleys. As the rope is pulled the weight, this time attached to the lower pulley rather than direct to the rope, moves up slower than the speed that the rope is pulled. Corresponding to this reduction in speed is an increase in the force on the weight. The amount of increase in the force depends on how many times the rope wraps round the pulleys. By wrapping the rope several times around the pulleys it is 3|Page Engineering Research Engineering Academy easily possible to lift your own weight off the ground! Belt Drives Belt drives are used transfer rotational motion from one place to another. On the left, both pulleys are the same size. Drive can be transfered by friction of the belt on the pulley or, if required, buy using a toothed belt. Chain drives work in a similar way. By crossing the belt the direction of drive can be changed. On the right two sizes of pulley are used to show how speed of rotation can be changed. A worm is used to reduce speed. For each complete turn of the worm shaft the gear shaft advances only one tooth of the gear. In this case, with a twelve tooth gear, the speed is reduced by a factor of twelve. Also, the axis of rotation is turned by 90 degrees. Unlike ordinary gears, the motion is not reversible, a worm can drive a gear to reduce speed but a gear cannot drive a worm to increase it. As the speed is reduced the power to the drive increases correspondingly. Worm gears are a compact, efficient means of substantially decreasing speed and increasing power. Ideal for use with small electric motors. 4|Page