Survey

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Metric tensor wikipedia , lookup

Tensors in curvilinear coordinates wikipedia , lookup

Relativistic angular momentum wikipedia , lookup

Riemannian connection on a surface wikipedia , lookup

Cartesian tensor wikipedia , lookup

Covariance and contravariance of vectors wikipedia , lookup

Transcript
```2.41
2 Statics of Particles (3D)
Forces in 3D
Most real-world problems are formulated for bodies and
forces not arranged on a single plane.
Hence, for quantitative analysis we need mathematical
representation of location and orientation for bodies,
magnitude and direction of forces, and means to formulate
conditions imposed on them.
We will use 3D vectors for the representation. However,
there are multiple mutually equivalent ways to represent
vector itself and one should select the most efficient way
based on the problem.
Operations on forces in 3D are performed, almost
exclusively, by use of formal vector algebra
Force Acting on a Line Between Two points
If a force
then:
is acting along the line 𝑨𝑩 with magnitude 𝑭,
What are rectangular components
of ?
 Any vector can be defined as
the magnitude times the unit
vector in the same direction:
2.42
 Unit vector in the direction of 𝑨𝑩:
 Need to find the vector and vector magnitude of
 Expanding to force components:
Forces in 3D, Example 1:
2.43
Example 2:
Resultant of the sum of forces in 3D:
Components of the resultant:
Magnitude of the resultant:
Direction cosines:
2.44
Example:
2.45
Particle Equilibrium (3D)
Similarly to a 2D situation, the EE are expanded to 3D:
Or, if separated into components:
Note: Three equations can be used to find 3 unknowns at
most.
Analysis of Equilibrium follows the same procedure as in
2D.
1. Draw FBD to include all acting forces.
2. Apply equations of equilibrium.
In case of 3D there are three equations per particle.
Hence, to solve them, there should be maximum 3
unknowns per particle.
In 3D elimination technique is almost never used. Instead,
use formal vector algebra.
Possible unknowns: Force components / magnitudes /
angles; some distances.
Examples: 1 force – 3 components, or magnitude and 2
angles; 3 forces: magnitudes; etc.
2.46
Example 1:
2.47
Example 2:
2.48
Example 3:
Example 4:
2.49
Example 5:
```