* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download 2008-SRJC-PH-H2-J2-CT-w-soln
Survey
Document related concepts
Transcript
H2 PHYSICS COMMON TEST 1 SOLUTIONS: MCQ 1. 1 2 Answer is B. 2. Since d sin n d sin n d As sin 1, n 1 10 3 3.33 Maximum order n 500 600 10 9 Hence maximum order is 3. Including the central maxima, the total number of lines that can be seen = 2(3) + 1 =7 Answer is C. 2 2 1 As the sources are antiphase, path difference of 2 means the meet at P and result in destructive interference. 3. Path difference 6 4 2 m Since both waves have approximately the same amplitude, Resultant amplitude = A – A= 0 Answer is A. 4. The two radio sources will interfere and form an interference pattern. For the interference pattern, D 3.0 102 2000 Fringe separation 4.0 m a 15 4 .0 0.044 s Period of fluctuations 90 Answer is A. 5. Net work done on gas = - Area under graph. 1 [(3.231 1.012) 105 ][( 22.40 20.40) 10 3 ] 2 221.9 J By First Law of Thermodynamics, U Q W Since the ideal gas went through a full cycle, U 0 Hence, 0 Q (221.9) Q 221.9 J Heat supplied by gas = Q 221.9 J Answer is C. 6. Statement A is wrong because more energy is needed to do work against the atmospheric pressure and also to break the bonds between molecules and not to increase random kinetic energy. Statement B is wrong because internal energy consists only of random kinetic energy and not bulk kinetic energy. Statement C is wrong because the statement is only true for an ideal gas. Increase in internal energy could be due to increase in potential energy due to intermolecular forces and not increase in random kinetic energy. In that case, the temperature would not have increased. Statement D is correct because for an ideal gas undergoing adiabatic process, net heat absorbed is zero and thus, work done on the gas translates to an increase in internal energy. Answer is D. 7. The total energy required to melt the object = heat required to raise temperature to melting point and heat required to melt the object. McT Ml Since rate of heat absorbed is H. McT Ml M (cT l ) Time required H H Answer is C. 8. For an ideal gas, pV = nRT. Hence, when pressure is increased 3 times, temperature will increase 3 times as well. When temperature increases 3 times, the kinetic energy will increase 3 times and hence the root mean square speed will increase 3 times. Answer is D. 9. Taking vector sum of EA, EB, EC and ED, the resultant E acts to the left. As there are equal amount of positive and negative charges at the same distance away from the centre, the resultant potential at the centre is thus zero. (A) Q (B) +Q EA EC EB ED Q (D) Answer is C. +Q (C) 10. P Q1 Q2 The electric potential at P due to charges Q1 and Q2 is the algebraic sum of the electric potentials due to individual charges at point P. Hence, the electric potential caused by Q2 at P is (100 – 70) = 30 V. The electric field strength at P due to charges Q1 and Q2 is the vector sum of the electric field strengths due to individual charges at point P. A possible value of the electric field strengths caused by Q2 at P is 50 2 30 2 = 40 V m-1. Answer is A. 11. A Electric potential at a point is the work done in bringing unit positive charge from infinity to the point. B Electric potential gradient is a scalar. D Unit potential gradient exists between any two points, if one joule of work is done in transporting one coulomb of charge over one metre. Answer is C. 12. Since E E dv dr 150 89 103 32 19 4690 V cm-1 The direction of electric field intensity is the direction of decreasing potential, the electric field intensity points towards P. Answer is C. 13. The resistance is constant when small p.d is applied. At higher p.d, temperature increases, the resistance increases and Ohm’s law is not obeyed, corresponding to the I-V characteristics of filament lamp. Answer is B. 14. A The magnitude of current through both sections is the same. (Kirchoff’s First Law) B The resistivity remains constant throughout because material is unchanged. C Resistance = l/A. Since width of narrower section is half, then A of narrower section is half, & the resistance per unit length is thus twice. D Since the relative lengths of the sections are not given, there is no way to verify statement D. Answer is C. 15. To operate normally, the current in the lamp, I = P/V = 0.04 A. Thus the current in the whole circuit should also be 0.04 A. E = V + IR = 6 + 0.04 (200) = 6 + 8 = 14 V. Answer is D. 16. Q=It => => Q = (E/R) t A Q Et L [using E = I R] [using R L ] A Answer is D. 17. Effective Resistance across RS PD across PQ 1 1 1 200 50 40 15 65 15V 15 10 40 10 65 10V 15 10 40 40 65 40V PD across RS 15 10 40 PD across QR As Q is connected to earth, potential at Q is 0 V. As P is of higher potential than Q, potential at P is 15 + 0 = 15 V. As R is of lower potential than P, potential at R is 0 – 10 = -10 V. As S is of lower potential than R, potential at S is -10 – 40 = -50 V. Common misconception: If the potential difference is 65 V, some thinks that it should be the higher potential being 65 V and the lower potential being 0 V. Another common problem is reading the drop in potential incorrectly. This is the issue addressed in option C. Answer is D. 18. The decrease in temperature will cause an increase in the resistance of the thermistor while the increase in light intensity will cause a drop in the resistance of the LDR. As a result, the p.d. across the thermistor will increase while the p.d. across the LDR should decrease. The answer cannot be B because the current would have passed through the diode instead of the LDR and hence, the changes in the resistance of the LDR will not have a significant effect on the potential difference reading V2. Answer is D. 19. Equivalent circuit for Option A: P 2.0 Ω 2.0 Ω 4.0 Ω Q 3.0 Ω 1.0 Ω Effective resistance 2.0 Ω 1 1 2 . 0 4 . 0 2 .0 2 .2 1 1 1 1 3 .0 1 .0 2 . 0 Equivalent circuit for Option B: P 2.0 Ω S 4.0 Ω 2.0 Ω 3.0 Ω 1.0 Ω Effective resistance 2.0 Ω 1 1 1 1 2 .0 2 .0 4 .0 1 1 3 .0 1 .0 2 . 0 1 .6 Equivalent circuit for Option C: 2.0 Ω 4.0 Ω 2.0 Ω 3.0 Ω Q S 1.0 Ω Effective resistance 2.0 Ω 1 1 1 1 2.0 4.0 2.0 3.0 1.0 2.0 1.3 Equivalent circuit for Option D: 2.0 Ω 2.0 Ω 4.0 Ω 1.0 Ω R 3.0 Ω Q 2.0 Ω Effective resistance 1 1 2 .0 1 .0 1 .2 1 1 1 1 3 .0 2 .0 2 .0 4 . 0 Common Problem: Unable to redraw the circuit into one which is visually more easy to decipher format because not being able to go back to the fundamental of what is in series and what is in parallel when deciding the relationship between resistors. Answer is A. 20. When the filament of bulb 2 breaks, there is no more connection across bulb 2. As a result, the section becomes an open circuit. The combined resistance of bulb 2 and 4 is lower than the resistance of bulb 4 alone. Hence, the overall resistance of the circuit increases. Due to an overall increase in resistance, the overall current decreases. The current passing through bulb 1 and 3 will decrease, hence brightness decrease for both bulbs. As the potential across bulb 4 increases, since the resistance is higher as compared to the effective resistance of bulb 2 and 4, the current flowing through it should be higher. Hence, the brightness of bulb 4 increases. Common Problem: Some may think that with one less bulb, there should be less resistance and hence a larger current for all. Some may think that since the effective resistance of the entire circuit increases, there should be less current flowing through all resistors and hence brightness of bulb 4 should decrease. Answer is D. 21. Applying right hand grip rule. Compass needle will be pointing in direction of magnetic field at that point. Answer is C. 22. As the circular motion is caused by the magnetic force, Bqv mr 2 Bqr mr 2 Bq m 2 ) T 2m T Bq Hence, T is independent of v. Bq m( Answer is B. 23. Initially, In the vertical direction, 1 s ut at 2 2 1 s at 2 , sin ce u 0 2 When the speed is doubled, 1 t ' t 2 As F Bqv . When the speed is doubled, the magnetic force is doubled and hence, the acceleration is doubled. 1 1 1 s' (2a)( t ) 2 s 2 2 2 Hence, deflection is halved. Answer is A. 24. The electric field causes it to deflect rightwards and the magnetic field causes it to deflect downwards, according to Fleming’s left hand rule. Answer is D. 25. Applying right hand grip rule, The magnetic field created by the vertical wires cancels out each other. The magnetic fields created by the horizontal wires reinforce each other creating a resultant field into the paper. Answer is D. Structured questions 1(a) (i) (ii) (iii) (iv) (V) 1(b) (i) It acts as a point source to ensure the light reaching the double slits are coherent and in phase. [1] The width of the single slit, S should be approximately equal to that of the wavelength of the light. [1] D x d 2.5 103 620 109 0.80 [1] 4 d d 7.9 104 m [1] The interference fringe pattern will disappear. Only a diffracted light pattern from the remaining slit will form on the screen. [1] The fringes will appear closer together. [1] d sin n n sin 1 d d 10 3 n 600 650 10 9 n<2.6 [1] The maximum value for n is 2, hence the 3rd order maximum does not exist. [1] (ii) n0 0 nv v d d n0 0 (n0 1)v d d n0 (0 v ) v sin v 400 2 [1] 0 v 600 400 nv 2 1 3 [1] n0 2 600 10 9 600 10 2 46.1 [1] sin 2(a) (i) At the mentioned temperature, the material is boiling and heat supplied is used to increase the potential energy of the particles as well as to do work against the environment as the material expands. [1] The heat energy supplied does not goes towards increasing the random kinetic energy of the particles, which is directly proportional to the temperature of the object. [1] Hence, the temperature remains constant. (ii) Power supplied, P VI 2.00(0.500) 1.00W Total energy supplied to boil the material, E Pt 1.00(49625 47787) 1840 J [1] Assuming no energy lost to the environment, Total energy supplied to boil the material = total energy absorbed to boil 1.50 kg of the material. mlv 1840 J 1.50l v 1840 lv 1230 J kg 1 [1] (b) (i) The reason is because there is heat lost to the environment and not all the heat supplied has been used to boil the material. [1] (ii) From the first experiment, 1.50lv h 1840 J _ (1) From the second experiment, 3.60lv h 2.50(0.700)(49625 47787) 3.60lv h 3220 _ (2) [1] Using (2) – (1), [1] 2.10lv 1380 l v 657 J kg 1 [1] (c) (i) A real gas behaves like an ideal gas under high temperature and low pressure. [1] The reason is because at high temperature, the particles are moving so fast that intermolecular forces are negligible and at low pressure, the particles are too far apart for intermolecular forces to be significant. [1] (ii) Applying the equation of state, pV nRT pV T As nR are constant in this case, pV nRT nR pV pV )before ( ) after T T Since pressure has remained constant, V V ( )before ( ) after [1] T T Vafter 0.5Vbefore Tafter Tbefore (400) 200 K [1] Vbefore Vbefore ( (iii) 3(a) (i) Number of particles present, pV N N A [1] RT 1.01 105 (1.00 103 ) N (6.02 1023 ) 3.66 1022 [1] 8.31(200) V 45 0 7.5 x10 3 Vm 1 . Electric field strength E 3 d 6.0 x10 Electrostatic force F eE 1.6 x10 19 x7500 1.2 x10 15 N F 1.2 x10 15 Acceleration a 1.32 x1015 ms 2 . 31 m 9.11x10 Direction of a is vertically downwards towards the positive plate. [0.5] [0.5] [1] [1] (ii) Let the initial speed be u. Horizontal motion: Time taken to travel 25 mm t 25 x10 3 u cos15 o ….(1) [0.5] Vertical motion: Vertical displacement = 0, time taken = t as given in equation (1) [0.5] 0 uy t 1 2 at 2 0 u sin 15o t 1 2 at 2 [0.5] u 1 25 x10 3 (1.32 x1015 )( ) 2 sin 15 o cos15 o [1] 8.12x106 ms 1. (b) (i) [0.5] Initial electric PE Q1Q2 4o r 1.6 10 2 1.6 10 4 8.85 10 1.0 10 19 19 12 9 4.6 1019 J (ii) [1] By law of conservation of momentum, Total initial momentum = Total final momentum 0 = mpvp-mv 0 = (1.6710-27)(2.0104)-(41.6710-27) v [1] v= 5.0103 m s-1 (iii) Total KE [1] 1 1 2 2 m p v p m v 2 2 2 2 1 1 1.67 10 27 2.0 104 4 1.67 10 27 5.0 103 2 2 19 4.2 10 J [1] (iv) Initial total energy = final total energy KE1 + PE1 = KE2 + PE2 - - 0 + 4.610 19 = 4.210 19 + Q1Q2 [1] 4 o r 0.410-19 = -8 r = 1.210 1.6 10 21.6 10 r 4 8.85 10 19 19 12 m [1] 4(a) The electromotive force of a cell is the amount of energy converted from other forms to electrical energy when a unit charge passes between the two terminals [1] while the potential difference between two points in an electric circuit is the amount of electrical energy converted to other forms of energy when a unit charge passes between the two points.[1] (b) (i) There is internal resistance of the cell. [1] The resistance of the ammeter is not zero. [1] [1] (ii) The resistance of the voltmeter is not infinite. [1] V 9.80 = 2.45kΩ Resistance of the wire = = [1] I 4.00 ×10 -3 The method is inappropriate as the current used in the calculation is not the current through the resistive wire only but includes the resistance through the voltmeter. [1] (iii) Given that the resistance of the wire is 5 k, and the effective resistance of the wire and voltmeter connected in parallel is 2.45 k, R × Rvoltmeter = 2.45kΩ R + Rvoltmeter 5Rvoltmeter = 2.45kΩ 5 + Rvoltmeter Rvoltmeter = 4.80kΩ [2] (iv) The ammeter should be connected in series with the resistive wire so as to measure the current in the wire only.[1] The voltmeter should be connected across the ammeter and the wire to measure the p.d across the wire since the pd across the ammeter is negligible as the resistance of the ammeter is much lower than that of the resistive wire. [1] E = 10.0 V [1] R A V 5(a) (i) At balance point, VXJ emf of 1.5V cell 1.5V [1] l VXJ XJ VXY [1] l XY l XJ VXJ l XY VXY VXY RXY Hence, RXY Edriver cell Rvar iable r 1.40 (6.00) 2.05V [1] 1.40 2.00 0.70 1.50 (1.00) 0.732 m [1] 2.05 VXY l XJ (b) (ii) At balance point, the potential across XJ along the wire and the e.m.f of the 1.50 V cell is the same. [1] Since the positive terminal of the cell is at the same potential as point X, the potential difference across the galvanometer is thus zero. [1] With zero potential difference, no current flows. (iii) A practical voltmeter does not have infinite resistance and thus draws current from the circuit. As a measuring device should not disrupt the physical quantity that it is measuring, a practical voltmeter has failed to do that. [1] However, the potentiometer does not draw current at balance point (as shown by zero deflection in the galvanometer) and thus, it does not disrupt the circuit and can measure the potential difference accurately. [1] (iv) Before balance point is reached, current still flows through the galvanometer. Without the 5.00 Ω resistor, the current flowing through the galvanometer could be significant and thus spoil the galvanometer. At balance point, VXJ p.d . across 5.00 resistor [1] V l XJ XJ l XY VXY From part (a)(i), VXY 2.05V [1] R5.00 5.00 p.d . across 5.00 resistor E1.50 (1.50) 1.36V [1] R5.00 r 5.00 0.50 1.36 l XJ (1.00) 0.663 m [1] 2.05 6(a) (i) (ii) (b) The magnetic flux density is the force experienced by a conductor of unit length, placed perpendicular to the magnetic field and carrying unit current. The tesla is equivalent to a force of 1 N experienced by a conductor of 1 m long, placed perpendicular to the magnetic field and carrying a current of 1 A. FB (i) x x x x x x x x I x x o x 30 x x x x x x x x x g W=mg (ii) For vertical equilibrium, FB cos 30 mg [1] BIl cos 30 mg I (c) (i) (ii) (iii) mg 5.0 103 9.81 76 A [1] Bl cos 30 1.5 103 0.50 cos 30 B 0 nI 4 107 700 3.5 3.1 103 T [1] F BIl [1] F 3.1 103 3.5 5.0 102 5.4 104 N [1] For frame to remain in horizontal position, Total clockwise moment = total anticlockwise moment FBlQC mgl [1] 5.4 104 (15.0 102 ) 0.10 103 9.81l [1] l 0.083 m [1] (d) For circular motion, mv2 [1] Bqv r mv 1.67 1027 1 105 r 5.8 103 m [1] Bq 0.18 1.6 1019 Since r 5.8 10 3 m , the protons will emerge from the side AB. [1]