* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Eyeing the retina nebula
Outer space wikipedia , lookup
Dyson sphere wikipedia , lookup
Hubble Deep Field wikipedia , lookup
Auriga (constellation) wikipedia , lookup
Astrobiology wikipedia , lookup
Rare Earth hypothesis wikipedia , lookup
Star of Bethlehem wikipedia , lookup
Extraterrestrial life wikipedia , lookup
International Ultraviolet Explorer wikipedia , lookup
Observational astronomy wikipedia , lookup
Formation and evolution of the Solar System wikipedia , lookup
Theoretical astronomy wikipedia , lookup
Planetary habitability wikipedia , lookup
Type II supernova wikipedia , lookup
Astrophotography wikipedia , lookup
Corona Australis wikipedia , lookup
Nebular hypothesis wikipedia , lookup
History of Solar System formation and evolution hypotheses wikipedia , lookup
Perseus (constellation) wikipedia , lookup
Corvus (constellation) wikipedia , lookup
Cosmic dust wikipedia , lookup
Stellar evolution wikipedia , lookup
Directed panspermia wikipedia , lookup
Spitzer Space Telescope wikipedia , lookup
Timeline of astronomy wikipedia , lookup
Aquarius (constellation) wikipedia , lookup
Cygnus (constellation) wikipedia , lookup
Star formation wikipedia , lookup
Eyeing the retina nebula By David F. Salisbury June 13, 2002 Planetary nebulae are the multicolored remnants of dead stars. When a star about the size of the Sun runs out of nuclear fuel, the core collapses to form a much smaller dwarf star and the outer layers are ejected to form an expanding cloud of dust and gas. Intense radiation from the collapsed star ionizes the surrounding gases, producing the glowing colors. IC4406, nicknamed the Retina Nebula, is one of the closest planetary nebulae to Earth. The Hubble Space Telescope image provides us with a side view of the nebula. The central core is shaped like a plump donut. The axis of the donut extends from the upper left to lower right in the plane of the picture. The twin plumes that extend outward along the axis make this a “bipolar” nebula. The dark lines that form an irregular lattice overlaying the central region – giving it the appearance of a human retina – represent a newly discovered phenomenon in the evolution of planetary nebula. C. Robert O’Dell – professor of physics at Vanderbilt – and his colleagues report the discovery of this new feature in the June issue of the Astronomical Journal. They identified it in the Retina Nebula and five other nearby planetary nebulae. According to the scientists, the dark lines are lanes of compressed dust and gas caused by an unknown type of hydrodynamic instability. (A different but well-known type of hydrodynamic instability causes clouds to appear on a sunny day.) They calculate that the density of the dust and gas in the dark lanes is much greater than the rest of the nebula, by perhaps a thousand times. As a result, the lanes trap a large fraction of the dust and gas ejected from the star. IC4406 is the smallest and youngest planetary nebula in the researchers’ study. The Dumbell Nebula is slightly older and larger. It has lanes similar to those in the Retina Nebula. However, the radiation from the central star has reached the lanes and begun to sculpt them into a different shape. The famous Ring Nebula is also bipolar, but it is oriented with its central axis facing Earth, giving us a top-down perspective. The blue region at the center is the area that has been cleaned out by the central star’s radiation. The edge of the blue area is the ionization front where the radiation impinges on the expanding dust cloud. It is older and larger than the Retina and Dumbbell Nebulae and the sculpting is further advanced. In the Eskimo Nebula, the sculpting process has proceeded even further, reforming the dense lanes into circular knots with cometary tails streaming outward away from the central star. The Helix Nebula is an example of the final stage in this evolution. A close-up view of the Helix Nebula shows the individual cometary knots that are formed by eons of interaction between the intense light from the central star and the dense clumps of dust and gas formed in the aftermath of the original explosion. Understanding the nature of these features is important because they have an impact on the stellar cycle of death and rebirth. Stars are fueled by hydrogen and helium. They create most -1- Eyeing the retina nebula of the heavier elements, including carbon, silicon and iron, in the nuclear fires that burn in their core. Planetary nebulae play a key role in recycling these materials throughout the universe. Without them rocky planets like the Earth and carbon-based life forms like us would not exist. The image of the Retina Nebula has been enhanced to dramatize its beauty. The difference in brightness between the central region and the plumes extending to the upper left and lower right is actually much greater than shown here. It has been selected as image of the month by the Hubble Heritage Project, which sees the space telescope as an instrument for extending human vision and bridging the gap between scientific endeavors and the public. - VU Intern Ashley Dozier contributed to this report. -2-