* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Study Guide for Ch 6 Test Newtons Laws
Specific impulse wikipedia , lookup
Jerk (physics) wikipedia , lookup
Fictitious force wikipedia , lookup
N-body problem wikipedia , lookup
Center of mass wikipedia , lookup
Seismometer wikipedia , lookup
Classical mechanics wikipedia , lookup
Work (physics) wikipedia , lookup
Rigid body dynamics wikipedia , lookup
Relativistic mechanics wikipedia , lookup
Centripetal force wikipedia , lookup
Equations of motion wikipedia , lookup
Modified Newtonian dynamics wikipedia , lookup
Classical central-force problem wikipedia , lookup
Name: Date: 6.1 Isaac Newton Isaac Newton is one of the most brilliant figures in scientific history. His three laws of motion are probably the most important natural laws in all of science. He also made vital contributions to the fields of optics, calculus, and astronomy. Plague provides opportunity for genius Isaac Newton was born in 1642 in Lincolnshire, England. His childhood years were difficult. His father died just before he was born. When he was three, his mother remarried and left her son to live with his grandparents. Newton bitterly resented his stepfather throughout his life. An uncle helped Newton remain in school and in 1661, he entered Trinity College at Cambridge University. He earned his bachelor’s degree in 1665. Ironically, it was the closing of the university due to the bubonic plague in 1665 that helped develop Newton’s genius. He returned to Lincolnshire and spent the next two years in solitary academic pursuit. During this period, he made significant advances in calculus, worked on a revolutionary theory of the nature of light and color, developed early versions of his three laws of motion, and gained new insights into the nature of planetary motion. Fear of criticism stifles scientist When Cambridge reopened in 1667, Newton was given a minor position at Trinity and began his academic career. His studies in optics led to his invention of the reflecting telescope in the early 1670s. In 1672, his first public paper was presented, on the nature of light and color. Newton longed for public recognition of his work but dreaded criticism. When another bright young scientist, Robert Hooke, challenged some of his points, Newton was furious. An angry exchange of words left Newton reluctant to make public more of his work. Revolutionary law of universal gravitation In the 1680s, Newton turned his attention to forces and motion. He worked on applying his three laws of motion to orbiting bodies, projectiles, pendulums, and free-fall situations. This work led him to formulate his famous law of universal gravitation. According to legend, Newton thought of the idea while sitting in his Lincolnshire garden. He watched an apple fall from a tree. He wondered if the same force that caused the apple to fall toward the center of Earth (gravity) might be responsible for keeping the moon in orbit around Earth, and the planets in orbit around the sun. This concept was truly revolutionary. Less than 50 years earlier, it was commonly believed that some sort of invisible shield held the planets in orbit. Important contributor in spite of conflict In 1687, Newton published his ideas in a famous work known as the Principia. He jealously guarded the work as entirely his. He bitterly resented the suggestion that he should acknowledge the exchange of ideas with other scientists (especially Hooke) as he worked on his treatise. Newton left Cambridge to take a government position in London in 1696. His years of active scientific research were over. However, almost three centuries after his death in 1727, Newton remains one of the most important contributors to our understanding of how the universe works. Reading reflection 1. Important phases of Newton’s education and scientific work occurred in isolation. Why might this have been helpful to him? On the other hand, why is working in isolation problematic for developing scientific ideas? 3. Briefly state one of Newton’s three laws of motion in your own words. Give an explanation of how this law works. 4. Define the law of universal gravitation in your own words. 5. The orbit of a space shuttle is surprisingly like an apple falling from a tree to Earth. The space shuttle is simply moving so fast that the path of its fall is an orbit around our planet. Which of Newton’s laws helps explain the orbit of a space shuttle around Earth and the orbit of Earth around the sun? 6.2 Newton's Second Law Read • Newton’s second law states that the acceleration of an object is directly related to the force on it, and inversely related to the mass of the object. You need more force to move or stop an object with a lot of mass (or inertia) than you need for an object with less mass. • The formula for the second law of motion (first row below) can be rearranged to solve for mass and force. What do you want to know? What do you know? acceleration (a) force (F) and mass (m) mass (m) acceleration (a) and force (F) force (F) acceleration (a) and mass (m) The formula you will use acceleration = mass = force mass force acceleration force = acceleration × mass Example • How much force is needed to accelerate a truck with a mass of 2,000 kilograms at a rate of 3 m/s2? F = m × a = 2,000 kg × 3 m/s2 = 6,000 kg-m/s2 = 6,000 N • What is the mass of an object that requires 15 N to accelerate it at a rate of 1.5 m/s2? m F 15 N 15 kg-m/s 2 10 kg a 1.5 m/s 2 1.5 m/s 2 Practice 1. What is the acceleration of a 2,000.-kilogram truck if a force of 4,200. N is used to make it start moving forward? 2. What is the acceleration of a 0.30-kilogram ball that is hit with a force of 25 N? 3. How much force is needed to accelerate a 68-kilogram skier at 1.2 m/s2? 4. What is the mass of an object that requires a force of 30 N to accelerate at 5 m/s2? 6.3 Momentum Read Which is more difficult to stop: A tractor-trailer truck barreling down the highway at 35 meters per second, or a small two-seater sports car traveling the same speed? You probably guessed that it takes more force to stop a large truck than a small car. In physics terms, we say that the truck has greater momentum. We can find momentum using this equation: momentum = mass of object velocity of object Velocity is a term that refers to both speed and direction. For our purposes we will assume that the vehicles are traveling in a straight line. In that case, velocity and speed are the same. The equation for momentum is abbreviated like this: P = m v. Momentum, symbolized with a P, is expressed in units of kg · m/s; m is the mass of the object, in kilograms; and v is the velocity of the object in m/s. Practice Use your knowledge about solving equations to work out the following problems: 1. If the truck has a mass of 4,000. kilograms, what is its momentum? Express your answer in kg · m/s. 2. If the car has a mass of 1,000. kilograms, what is its momentum? 3. An 8-kilogram bowling ball is rolling in a straight line toward you. If its momentum is 16 kg · m/s, how fast is it traveling? 4. A beach ball is rolling in a straight line toward you at a speed of 0.5 m/s. Its momentum is 0.25 kg · m/s. What is the mass of the beach ball?