Survey							
                            
		                
		                * Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Summary 6 Translation and rotation TRANSLATION: If B=0, the general quadratic equation can be transformed to one of the standard forms of a conic section. This can be accomplished by using the translation equations x=x'+h and y=y'+k (x'=x-h and y'=y-k). Replacing x by x - h in the standard form produces a horizontal shift (phase shift) of the graph, h units to the right if h>0 or h units to the left if h<0. Replacing y by y - k produces a vertical shift of the graph, k units up if k>0 or k units down if k<0. Method I. Use completing the square, let x - h = x' and y - k = y'. Method II. 1) In the original equation substitute x = x' + h and y = y' + k. 2) Find the value of h and k that will eliminate the x-term and the y-term in the equation 3) Find the desired equation by using the values found for h and k. ROTATION: If B≠0 we need to use a rotation to transform the general equation equation to one of the standard forms.  is the angle or rotation. B Step 1: Let tan 2  (if A  C or let   45 if A  C) AC Step 2. Using trigonometric relations and the triangle below find cos 2 which has to agree in sign with tan 2 B 2 A-C Step 3. Use the formulas 1  cos 2 1  cos 2 and cos   to find sin  and cos  2 2 sin  Note : m  tan   is the slope of x  cos   x  x cos   y  sin  Step 4. Let   y  x sin   y  cos  sin   Step 5. Substitution of the results in step 4 into the original equation eliminates the xy term B sin  Step 6. Using Use either tan 2  to find the or tan   AC cos  angle  of rotation Step 7. Graph in the x'-y' coordinate system. 1 Translation I. Translation: a point P has coordinates (x, y) with respect to the x-y system. If a new system (x, y) is obtained by translated the system to a new origin with coordinates (h, k) then the coordinates of P with respect to the new system is given by the ordered pair (x-h, y-k). y y  x  x  h   y  y  k  x  x  h and   y  y  k P h x k x Example: Find the values of h and k that will eliminate the x and y terms from the equation 25x 2  9 y 2  100 x  54 y  44  0 . Use the necessary translation. Let x  x  h and y  y   k 25x 2  9y 2  100x  54y  44  0  25x   h 2  9y   k 2  100x   h   54y   k   44  0    25 x 2  2hx   h 2  9( y  2  2ky   k 2 )  100x   100h  54y   54k  44  0  25x 2  9y  2  (50h  100)x  (18k  54)y   25h 2  9k 2  100h  54k  44  0 50h  100  0  h  2 x  x  2  x  x  2  To eliminate x  and y  let      18k  54  0 k   3  y  y   3  y   y  3 The resulting equation is 25x  2  9y  2  25( 4)  9(9)  100( 2)  54( 3)  44  0 25x  2  9y  2  100  81  200  162  44 25x  2  9y  2  225  x 2 y  2   1 (an ellipse ) 9 25 ( x  2) 2 y  32 or  1 9 25 2 Example: Find the values of h and k that will eliminate the x and y terms from the equation xy2x+3y=5 Let x  x   h and y  y   k xy  2 x  3 y  5   x   h  y   k   2 x   h   3 y   k   5  x y   hy   kx   hk  2 x   2h  3 y   3k  5  x y   k  2x   h  3 y   hk  2h  3k  5 k  2  0  k  2  x  x  3  x  x  3        h  3  0 h  3  y  y   2  y   y  2 x y   (3)(2)  2(3)  3(2)  5 x y   1 Rotation: Coordinates- Rotation II. Rotation of axis. Theorem: If a system x-y is rotated counterclockwise through and angle  to obtain the new system x-y, then the unit vectors in the xand yaxis of the new system are given by  i  i cos  j sin   i  i cos  j sin  and    j  i sin   j cos  j  i sin   j cos y y  x  X Theorem: The coordinates (x, y) of a point P in the rotated system x - y are given by  x  x  cos   y  sin   x   x cos   y sin  and    y  x  sin   y  cos   y    x sin   y cos  3 Example 2 - Rotate the axis to eliminate the xy term. Sketch, showing both axis. x2 - 2xy + y2 -1 =0. Step1. A  C  1    45 Step 2 : Step 3 : sin   Step 4 : x  x 2 1 2  and cos   y 2  x  y  2 1 2 and  x 2  y 2  x  y  2 2 2  x  y    x   y   x   y    x   y   Step 5 : x  2 xy  y  1  0     2    1 2  2  2   2    1 2 1  x  2  2 x y   y  2  x  2  y  2  x  2  2 x y   y  2  1 2 2 2 1 1  4 y2  2  y2   y    two parallel lines 2 2 2 2       Y Y’ X’ x 4 Example 2 - Rotate the axis to eliminate the xy term. Sketch, showing both axis. 5x2 - 4xy + 8y2 -36=0 B 4 4   AC 58 3 3 Step 2 : cos 2  5 Step1. tan 2  3 1   1  cos 2 5  2  1 Step 3 : sin    2 2 10 5 3 1   1  cos 2 5  4  2 cos    2 2 10 5 2 x y  2 x  y  x 2 y  x  2 y  Step 4 : x    and    5 5 5 5 5 5 2 2  2 x  y    2 x   y   x   2 y    x   2 y   Step 5 : 5 x  4 xy  8 y  36  0  5   4    8   36 5  5  5   5    5 4 8  4 x  2  4 x y   y  2  2 x  2  3 x y   2 y  2  x  2  4 x y   4 y  2  36 5 5 5 2 2     20 x  2  45 y  2  180    x2 y 2   1  an ellipse 9 4 1 tan   sin  5 1   2 cos  2 5 Y Y’ x’ x 5  6