Download A sequence - Uplift Education

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Law of large numbers wikipedia , lookup

Large numbers wikipedia , lookup

Georg Cantor's first set theory article wikipedia , lookup

Hyperreal number wikipedia , lookup

Collatz conjecture wikipedia , lookup

Proofs of Fermat's little theorem wikipedia , lookup

Sequence wikipedia , lookup

Transcript
1
AP Calculus BC
Review: Sequences, Infinite Series, and Convergence
Sequences
A sequence {๐’‚๐’ } is a function whose domain is the set of positive integers.
The functional values a1, a2, a3, . . . an are called the terms of the sequence.
The number an is called the nth term of the sequence.
A sequence is either convergent (if the sequence has a limit, i.e. it approaches a specific number)
or divergent (if the sequence does not approach a specific limit)
A sequence {๐‘Ž๐‘› } has the limit L
DEF 1
๐‘™๐‘–๐‘š ๐‘Ž๐‘› = ๐ฟ
๐‘›โ†’โˆž
๐‘œ๐‘Ÿ
๐‘Ž๐‘› โ†’ ๐ฟ
๐‘Ž๐‘ 
๐‘› โ†’โˆž
if we can make the terms ๐‘Ž๐‘› as close to ๐ฟ as we like by taking ๐‘› sufficiently large.
If ๐‘™๐‘–๐‘š ๐‘Ž๐‘› exists , we say the sequence is convergent. Otherwise, we say the sequence is divergent.
๐‘›โ†’โˆž
DEF 2
๐‘™๐‘–๐‘š ๐‘Ž๐‘› = โˆž
๐‘›โ†’โˆž
means that for every positive number ๐‘€ there is an integer N such that ๐‘Ž๐‘› > ๐‘€ whenever n > N
It is a special type of divergence. We say {๐‘Ž๐‘› } diverges to โˆž .
โ— Sequence {โˆ’1, 1, โˆ’1, 1, โˆ’1, 1, โˆ’1, โ€ฆ } is divergent, but doesnโ€™t diverges to โˆž .
โ— Sequence ๐‘Ž๐‘› =
๐‘›2 + 3
is divergent too, and it does diverges to โˆž .
2๐‘› โˆ’ 5
If {๐‘Ž๐‘› } and {๐‘๐‘› } are convergent sequences and c is a constant, then
THM 1
๐‘™๐‘–๐‘š (๐‘Ž๐‘› ± ๐‘๐‘› ) = ๐‘™๐‘–๐‘š ๐‘Ž๐‘› ± ๐‘™๐‘–๐‘š ๐‘๐‘›
๐‘›โ†’โˆž
๐‘›โ†’โˆž
๐‘›โ†’โˆž
๐‘™๐‘–๐‘š ๐‘๐‘Ž๐‘› = ๐‘ ๐‘™๐‘–๐‘š ๐‘Ž๐‘›
๐‘›โ†’โˆž
๐‘›โ†’โˆž
๐‘™๐‘–๐‘š (๐‘Ž๐‘› ๐‘๐‘› ) = ๐‘™๐‘–๐‘š ๐‘Ž๐‘› โˆ™ ๐‘™๐‘–๐‘š ๐‘๐‘›
๐‘›โ†’โˆž
๐‘™๐‘–๐‘š
๐‘›โ†’โˆž
๐‘›โ†’โˆž
๐‘›โ†’โˆž
๐‘
๐‘™๐‘–๐‘š (๐‘Ž๐‘› )๐‘ = (๐‘™๐‘–๐‘š ๐‘Ž๐‘› )
๐‘›โ†’โˆž
๐‘›โ†’โˆž
๐‘™๐‘–๐‘š ๐‘Ž๐‘›
๐‘Ž๐‘›
= ๐‘›โ†’โˆž
๐‘๐‘› ๐‘›
๐‘™๐‘–๐‘š ๐‘๐‘›
๐‘›โ†’โˆž
๐‘™๐‘–๐‘š
๐‘› make the terms
1 ๐‘Ž๐‘› as close๐‘›โ†’โˆž
if we can
to ๐ฟ1 as we like by 1taking ๐‘› sufficiently large.
โ— ๐‘™๐‘–๐‘š
= ๐‘™๐‘–๐‘š
=
=
= 1
๐‘›โ†’โˆž ๐‘› + 1
๐‘›โ†’โˆž 1 + 1โ„
1 + 0
๐‘™๐‘–๐‘š
1 + ๐‘™๐‘–๐‘š 1โ„
๐‘›
๐‘›
If ๐‘™๐‘–๐‘š ๐‘Ž๐‘› exists , we say the
sequence
is convergent.
๐‘›โ†’โˆž
๐‘›โ†’โˆž Otherwise, we say the sequence is divergent.
๐‘›โ†’โˆž
THM 2 - ๐“๐ก๐ž ๐’๐ช๐ฎ๐ž๐ž๐ณ๐ž ๐ญ๐ก๐ฆ
If ๐‘Ž๐‘› โ‰ค ๐‘๐‘› โ‰ค ๐‘๐‘› for ๐‘› โ‰ฅ ๐‘›0 and ๐‘™๐‘–๐‘š ๐‘Ž๐‘› = ๐‘™๐‘–๐‘š ๐‘๐‘› = ๐ฟ , then ๐‘™๐‘–๐‘š ๐‘๐‘› = ๐ฟ
๐‘›โ†’โˆž
โ— ๐‘™๐‘–๐‘š
๐‘›!
=?
๐‘›๐‘›
๐‘Ž๐‘› =
1 โˆ™ 2 โˆ™ 3 โˆ™โˆ™โˆ™ ๐‘›
1 1 โˆ™ 2 โˆ™ 3 โˆ™โˆ™โˆ™ ๐‘›
= (
)
๐‘› โˆ™ ๐‘› โˆ™ ๐‘› โˆ™โˆ™โˆ™ ๐‘›
๐‘› ๐‘› โˆ™ ๐‘› โˆ™ ๐‘› โˆ™โˆ™โˆ™ ๐‘›
๐‘›โ†’โˆž
๐‘™๐‘–๐‘š 0 = 0
๐‘›โ†’โˆž
๐‘™๐‘–๐‘š
1
๐‘›โ†’โˆž ๐‘›
= 0 (๐‘‡๐ป๐‘€ 2) โŸน
๐‘›โ†’โˆž
๐‘›โ†’โˆž
1 โˆ™ 2 โˆ™ 3 โˆ™โˆ™โˆ™ ๐‘›
โ‰ค1 โŸน
๐‘› โˆ™ ๐‘› โˆ™ ๐‘› โˆ™โˆ™โˆ™ ๐‘›
๐‘™๐‘–๐‘š
๐‘›!
๐‘›โ†’โˆž ๐‘›๐‘›
=0
0 < ๐‘Ž๐‘› โ‰ค
1
๐‘›
2
If lim ๐‘“(๐‘ฅ) = ๐ฟ ๐‘Ž๐‘›๐‘‘ ๐‘“(๐‘›) = ๐‘Ž๐‘› , when n is an integer, then ๐‘™๐‘–๐‘š ๐‘Ž๐‘› = ๐ฟ
THM 3
๐‘ฅโ†’โˆž
โ— ๐‘™๐‘–๐‘š
๐‘›โ†’โˆž
๐‘›โ†’โˆž
๐‘™๐‘› ๐‘›
=?
๐‘›
(
โˆž
)
โˆž
l'Hospital's rule cannot be applied to sequences but to function of real variable.
Introducing ๐‘“(๐‘ฅ) = ๐‘™๐‘› ๐‘ฅโ„๐‘ฅ we can use it now.
๐‘™๐‘–๐‘š
๐‘ฅโ†’โˆž
1โ„
๐‘™๐‘› ๐‘ฅ
๐‘ฅ
= ๐‘™๐‘–๐‘š
= 0
๐‘›โ†’โˆž 1
๐‘ฅ
โ— ๐‘™๐‘–๐‘š
๐‘›โ†’โˆž
3๐‘›
=?
๐‘’ 5๐‘›
(
(๐‘‡๐ป๐‘€ 3) โŸน
๐‘™๐‘–๐‘š
๐‘›โ†’โˆž
๐‘™๐‘› ๐‘›
=0 โŸน
๐‘›
โˆž
)
โˆž
Sequence is obviously approaching 0 as n approaches infinity. Letโ€™s apply THM 3 anyway.
๐‘“(๐‘ฅ) =
3๐‘ฅ
๐‘’ 5๐‘ฅ
3๐‘ฅ
โˆž
= ( )=
5๐‘ฅ
๐‘ฅโ†’โˆž ๐‘’
โˆž
lim ๐‘“(๐‘ฅ) = lim
๐‘ฅโ†’โˆž
โ— Show that the sequence {
lim ๐‘“(๐‘ฅ) = lim
๐‘ฅโ†’โˆž
๐‘ฅโ†’โˆž
1+2๐‘›3
๐‘›3
lim
๐‘ฅโ†’โˆž
3
=0 โŸน
5๐‘’ 5๐‘ฅ
๐‘™๐‘–๐‘š
๐‘›โ†’โˆž
3๐‘›
=0
๐‘’ 5๐‘›
} converges
1 + 2๐‘ฅ 3
โˆž
= ( )=
3
๐‘ฅ
โˆž
lim
๐‘ฅโ†’โˆž
1/๐‘ฅ 3 + 2
=2 โŸน
1
1 + 2๐‘›3
= 2
๐‘›โ†’โˆž
๐‘›3
lim
We will often have to find a formula for the general, or nth, term of a sequence. Look at the next example:
โ— If the first four terms of a sequence {an} are 1 ,
9 27 81
,
,
7 11 15
a) find a formula for the nth term of the sequence
b) determine whether the sequence converges or diverges
a) sequence is:
31 32 33 34
3
nth term is: ๐‘Ž๐‘› =
๐‘) ๐‘“(๐‘ฅ) =
THM 4
,
7
3๐‘›
, 11 , 15 , โ‹ฏ , =
31
32
33
4๐‘›โˆ’1
3๐‘ฅ
4๐‘ฅ โˆ’ 1
3๐‘ฅ
โˆž
3 ๐‘ฅ ๐‘™๐‘› 3
= ( ) = lim
= โˆž
๐‘ฅโ†’โˆž
4๐‘ฅ โˆ’ 1
โˆž
4
lim
๐‘ฅโ†’โˆž
If lim |๐‘Ž๐‘› | = 0 , then ๐‘™๐‘–๐‘š ๐‘Ž๐‘› = 0
๐‘ฅโ†’โˆž
โ— ๐‘™๐‘–๐‘š
๐‘›โ†’โˆž
๐‘™๐‘–๐‘š |
๐‘›โ†’โˆž
๐‘›โ†’โˆž
(โˆ’1)๐‘›
=?
๐‘›
(โˆ’1)๐‘›
1
| = ๐‘™๐‘–๐‘š
=0
๐‘›โ†’โˆž ๐‘›
๐‘›
(๐‘‡๐ป๐‘€ 4) โŸน
๐‘™๐‘–๐‘š
๐‘›โ†’โˆž
(โˆ’1)๐‘›
=0
๐‘›
โ— For what values of ๐‘Ÿ is the sequence {๐‘Ÿ ๐‘› } convergent?
๐‘Ÿ=0
๐‘Ÿ=1
0<๐‘Ÿ<1
โˆ’1 < ๐‘Ÿ < 0
34
,
,
,
,โ‹ฏ
4(1)โˆ’1 4(2)โˆ’1 4(3)โˆ’1 4(4)โˆ’1
๐‘™๐‘–๐‘š 0๐‘› = 0
๐‘›โ†’โˆž
๐‘™๐‘–๐‘š 1๐‘› = 1
๐‘›โ†’โˆž
๐‘™๐‘–๐‘š ๐‘Ÿ ๐‘› = 0
๐‘›โ†’โˆž
๐‘™๐‘–๐‘š |๐‘Ÿ ๐‘› | = 0
๐‘›โ†’โˆž
(๐‘‡๐ป๐‘€ 4) โŸน
๐‘™๐‘–๐‘š ๐‘Ÿ ๐‘› = 0
๐‘›โ†’โˆž
{๐‘Ÿ ๐‘› } converges for โˆ’ 1 < ๐‘Ÿ < 1 and diverges for |๐‘Ÿ| > 1
โŸน the sequence diverges.
3
DEF 3 โ€“ MONOTONIC SEQUENCE
is a sequence {๐‘Ž๐‘› } such that either it is
increasing, that is ๐‘Ž๐‘›+1 > ๐‘Ž๐‘› for every ๐‘› โ‰ฅ 1 , or decreasing, that is ๐‘Ž๐‘›+1 < ๐‘Ž๐‘› for every ๐‘› โ‰ฅ 1 .
๐‘›
is decreasing.
๐‘›2 + 1
๐‘›+1
๐‘›
โŸน
< 2
โŸน (๐‘› + 1)(๐‘›2 + 1) < ๐‘›[(๐‘› + 1)2 + 1]
(๐‘› + 1)2 + 1
๐‘› +1
โ— Show that sequence ๐‘Ž๐‘› =
๐‘Ž๐‘›+1 < ๐‘Ž๐‘›
โŸน ๐‘›3 + ๐‘›2 + ๐‘› + 1 < ๐‘›3 + 2๐‘›2 + 2 ๐‘› โŸน 1 < ๐‘›2 + ๐‘›
For ๐‘› โ‰ฅ 1 inequality [1 < ๐‘›2 + ๐‘›] is true, so ๐‘Ž๐‘› =
๐‘›
๐‘›2 +1
is decreasing.
A sequence {๐‘Ž๐‘› } is bounded above if there is a number ๐‘€ such that
DEF 4
๐‘Ž๐‘› โ‰ค ๐‘€
for every ๐‘› โ‰ฅ 1
A sequence {๐‘Ž๐‘› } is bounded below if there is a number ๐‘š such that
๐‘Ž๐‘› โ‰ฅ ๐‘š
for every ๐‘› โ‰ฅ 1
A sequence {๐‘Ž๐‘› } is bounded if it is bounded above and below.
THM 5 โ€“ MONOTONIC SEQUENCE THEOREM
โ— A bounded monotonic increasing sequence is convergent (it converges to its greatest lower bound).
โ— A bounded monotonic decreasing sequence is convergent (it converges to its greatest lower bound).
โ— A convergent sequence is bound.
โ— There are sequences which are convergent without being monotonic. Sequences:
1
1 1
2
3 4
{โˆ’1, , โˆ’ , , โ€ฆ }
and
1
{ ,
1
1 1
, ,
2 22, 3 32
, โ€ฆ } both converge to 0.
Mathematical induction is a method of mathematical proof typically used to establish that a given statement P(n)
is true for all natural numbers
1. step: verify that P(n) is true for n = i (i is usually 1)
2. step (inductive step): assuming that there is a ๐‘˜ โ‰ฅ 1, for which P(k) is true, then
3. step: prove that, P(k+1) is true.
Since you have verified P(i), it follows from the inductive step that P(i + 1) is true, and hence, P(i + 2) is true, and
hence P(i + 3) is true, and so on. In this way the theorem has been proved.
The Fibonacci numbers are recursively defined as ๐‘Ž1 = 1, ๐‘Ž2 = 1, ๐‘Ž๐‘› = ๐‘Ž๐‘›โˆ’1 + ๐‘Ž๐‘›โˆ’2 , ๐‘› > 2
Show that the sequence of Fibonacci numbers {1, 1, 2, 3, 5, 8, 13, 21, ...} does not converge.
We will show by induction that the sequence of Fibonacci numbers is unbounded. If that is true, then the sequence
can not converge, because every convergent sequence must be bounded.
We will show that the n-th term of that sequence is greater or equal to n, at least for n > 4.
Property P(n): ๐‘Ž๐‘› โ‰ฅ ๐‘› for all ๐‘› > 4
1. Check the lowest term: ๐‘Ž5 = ๐‘Ž4 + ๐‘Ž3 = 5 โ‰ฅ 5 is true
2. Assume: ๐‘Ž๐‘› โ‰ฅ ๐‘› for all ๐‘› > 4
3. Prove: ๐‘Ž๐‘›+1 โ‰ฅ ๐‘› + 1
๐‘Ž๐‘›+1 = ๐‘Ž๐‘› + ๐‘Ž๐‘›โˆ’1 โ‰ฅ ๐‘› + ๐‘Ž โ‰ฅ ๐‘› + 1 โ‰ฅ ๐‘› ,
Hence, by induction the Fibonacci numbers are unbounded and the sequence can not converge.