* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

# Download parameters which affect real and reactive power flow

Transmission line loudspeaker wikipedia , lookup

Pulse-width modulation wikipedia , lookup

Audio power wikipedia , lookup

Power inverter wikipedia , lookup

Power over Ethernet wikipedia , lookup

Opto-isolator wikipedia , lookup

Variable-frequency drive wikipedia , lookup

Overhead power line wikipedia , lookup

Power MOSFET wikipedia , lookup

Wireless power transfer wikipedia , lookup

Surge protector wikipedia , lookup

Electrification wikipedia , lookup

Power factor wikipedia , lookup

Stray voltage wikipedia , lookup

Electric power system wikipedia , lookup

Buck converter wikipedia , lookup

Electric power transmission wikipedia , lookup

Electrical substation wikipedia , lookup

Power electronics wikipedia , lookup

Amtrak's 25 Hz traction power system wikipedia , lookup

Switched-mode power supply wikipedia , lookup

Voltage optimisation wikipedia , lookup

Power engineering wikipedia , lookup

Alternating current wikipedia , lookup

History of electric power transmission wikipedia , lookup

FACULTY OF ENGINEERING LAB SHEET EET 2026 POWER TRANSMISSION AND DISTRIBUTION TRIMESTER II (2010-2011) PTD1 - Performance of Transmission Line under Different Loading Conditions PTD2 - Parameters which affect Real and Reactive Power Flow *Note: On-the-spot evaluation may be carried out during or at the end of the experiment. Students are advised to read through this lab sheet before doing experiment. Your performance, teamwork effort, and learning attitude will count towards the marks. EET 2026 Transmission and Distribution Instruction 1. Before coming to the laboratory read the lab sheet carefully and understands the procedure of performing the experiments. 2. Do not switch-on the power supply unless permitted by the lab supervisor. 3. Do not make or break any connection with the power supply on. 4. Handle the equipments with care. 5. Do the necessary calculation, draw the graphs and submit the report within the specified time of the lab session. Marking Scheme Lab Report Writing: (The report should consists of Results and Answers for all the questions, Discussion and Conclusion) ----------------------------------7 marks Spot evaluation (Oral assessment at the end of lab) ------------------- 3 marks Experiment # 1 Performance of Transmission Line under Different Loading Conditions Objectives To analyze the voltage regulation under resistive, inductive and capacitive loading conditions of the transmission line To compare the voltage drop in the transmission line when the sending-end and receiving-end voltages have the same magnitude To perform regulation of the receiving-end voltage Introduction A short transmission line is modeled by a single reactance as shown in Fig. 1. A good understanding of the behaviour of most of the transmission lines can be obtained by the short line model. It is this model which will be used in this experiment. Depending upon the loading condition the phase angle difference between the sending-end and receiving-end voltages and the voltage drop along the line will vary. These effects can be easily understood from the phasor diagram shown in Fig. 1. It may also be observed that a significant voltage drop will exist across the line even when the sending -end voltage, E1 and the receiving-end voltage, E2 are equal in magnitude. I XL E1 E1 IX L E2 E2 I Fig. 1 (a) Transmission line (b) Phasor diagram 2 We have studied that the voltage drop along the transmission line and the receiving-end voltage vary widely for inductive loads. In order to regulate the voltage at the receiving-end of the line in some way so as to keep it at as constant as possible we should adopt some type of compensation. One method commonly used is to connect shunt capacitors at the end of the line. These capacitors produce a significant voltage rise thus compensating for the voltage drop. Static capacitors are switched in and out in a practical system and their value is adjusted depending on the loads. For purely inductive loads, the capacitor should deliver reactive power equal to that consumed by the inductive load. For resistive loads, the reactive power, which the capacitor must supply to regulate the voltage, is not easy to calculate. In this experiment, we shall determine the reactive power (the value of capacitor) by trial and error, adjusting the capacitors until the receiving-end voltage is approximately equal to the sendingend voltage. For loads, which draw both real and reactive power, the same trial and error method is adopted. Note that for a short transmission line having a line reactance of X /phase and resistance neglected. The following formulas will be useful. Sending-end voltage (L-L) = E11; Receiving end voltage (L-L) = E22 Three-phase sending-end power = Three-phase receiving end Power E E Sin (1 2 ) = P1 = P2 = 1 2 X 2 E E E Cos(1 2 ) Three-phase sending-end reactive power = Q1 = 1 - 1 2 X X 2 E1 E2 Cos(1 2 ) E 2 Three-phase receiving-end reactive power = Q2 = X X Apparent power at sending end = S1 Apparent power at receiving end = S 2 P Q ; P Q ; 2 1 2 1 2 2 2 2 Equipment required Three-phase transmission line (8329) Resistive load (8311) Inductive load (8321) Capacitive load (8331) AC voltmeter (8426) Phase meter (8451) Three-phase wattmeter/varmeter (8446) Power supply (8821) Connection leads (9128) Procedure 1. Set the impedance of the transmission line to 200 and connect the meters as shown in Fig. 2. The circuit should be connected to the three-phase variable supply. Note that watt/var meters and phase meter need 24V AC supply provided in the power supply unit. Connect all the loads in star. Verify your connections with the lab supervisor before switching on the power supply. 3 0-500V E2 0-500V E1 4 1 5 2 3 6 P1 1 5 2 3 6 8821 0-415V Q1 4 8446 4 P2 8329 Q2 5 6 8446 3-phase Yconnected LOAD 8311 8321 8331 Fig. 2 Connection diagram for steps 2, 3 and 4 2. Adjust the sending-end voltage E1 to 300 V and keep it constant for the reminder part of the experiment. Use a three-phase resistive load and increase the load in steps making sure that the loads are balanced. Take readings of E1, Q1, P1, E2, Q2, and P2. Record your results in Table 1. 3. Switch off the power supply and connect a three-phase balanced inductive load in parallel with the balanced resistive load. Don’t remove any other connections shown in Fig.2. Increase the load in steps making sure that the loads are balanced. Take readings of E 1, Q1, P1, E2, Q2, and P2. Record your results in Table 2. 4. Switch off the power supply, remove the inductive load and connect a three-phase balanced capacitive load in parallel with the balanced resistive load. Take readings of E1, Q1, P1, E2, Q2, and P2 for different loadings. Record your results in Table 3. 5. Draw three graphs of E2 (obtained from steps 2, 3, and 4) on the same graph paper as a function of the receiving-end power P2 and discuss your results. 6. Switch off the power supply and connect a phase meter to measure the phase angle difference between E1 and E2 and a voltmeter to measure the voltage across the transmission line as shown in Fig. 3. Note that the load consists of resistances in parallel with capacitances. Now for each resistive load, adjust the capacitive load so that the load voltage E2 is as close as possible to 300 V. Take readings of XC, E1, P1, Q1, E2, P2, Q2, and the phase angle for different loadings. Record your results in Table 4. 7. Draw the graphs of E2 and the phase angle difference between E1 and E2 as a function of P2 from the results in Table 4. Note that the addition of static capacitors has yielded a much more constant voltage, and further more, the power P2 which can be delivered has increased. On this curve, indicate the phase angle between E2 and E1 as well as the reactive power Q2 used for individual resistive load settings. 8. In this part of the experiment, we shall observe a significant voltage drop along the transmission line even when the voltages E1 and E2 are equal in magnitude. This voltage drop is due to the phase angle difference between the two voltages. Switch off the supply and insert an ammeter in series with the transmission line as shown in Fig. 3 to measure 4 the line current without removing any other connection. Using the circuit shown in Fig. 3, set the load resistance per phase at 686 and E1 = 300 V, adjust the capacitive reactance until the load voltage is as close as possible to 300 V. Measure and record E1, Q1, P1, E2, Q2, P2, E3, the line current I and the phase angle. 8451 0-500V 1 2 3 4 E2 0-500V E1 686 8329 4 1 5 6 2 3 4 1 5 6 2 3 4 686 P1 Q1 P2 Q2 5 6 A 8821 686 8446 0-415V 8446 E3 3-phase 8311 8331 0-250V Fig.3 Connection diagram for Steps 6 – 8 9. Using the results of step 8, draw the phasor diagram of per phase values of E 1 and E2 to scale and draw E3. From the diagram compute E3 and compare it with the measured value. Also compute the real power, reactive power and apparent power consumed by the line. From the apparent power compute the line current and compare it with the measured value. Observations Table 1: Results of procedure step 2 R 4800 2400 1600 1200 960 800 686 E1 V P1 W Q1 var E2 V 5 P2 W Q2 Var Table 2 Results of procedure step 3 R 4800 2400 1600 1200 960 800 686 Xl 4800 2400 1600 1200 960 800 686 E1 V P1 W Q1 var E2 V P2 W Q2 var P2 W Q2 var Table 3 Results of procedure step 4 R 4800 2400 1600 1200 960 800 686 Xc 4800 2400 1600 1200 960 800 686 E1 V P1 W Q1 var E2 V Table 4 Results of procedure step 6 R 4800 2400 1600 1200 960 800 686 Xc E1 V P1 W Q1 var E2 V Results of procedure step 8 E1= E2= P1= P2 = Q1= Q2= Phase angle = E3= Line current, I = 6 P2 W Q2 var Angle degree Sample calculation This sample calculation is to help you to answer Exercise 3. Let E1 = 350 V E2 = 350 V E3 = 165 V P1 = 600 W P2 = 510 W Q1 = 170 var Q2 = -280 var Phase angle = 48o and Line current, I = 0.95 E1 per phase = 350/3 = 202 V E2 per phase = 350/3 = 202 V E3 = 165 V P1 per phase = 600/3 = 200 W P2 per phase = 510/3 = 170 W Q1 per phase = 170/3 = 56.7 var Q2 per phase = -280/3 = 93.3 var The phasor diagram of voltages to scale is shown in Fig.4. E1 -48o E3=165 E2 Fig. 4 Phasor diagram From the figure E3 = 165 V which is the same as the measured value. [The voltage E3 may also be calculated using the formula, E3 = 2*E1*sin(24o)] Real power consumed = 200 –170 = 30 W Reactive power consumed = 56.7 –(-93.3) = 150 var Apparent power in the line = 1502 302 153 VA Current through the line = 153/165 = 0.93 A The difference between the calculated value and the measured value is 0.02 A. Exercise 1. Draw the graphs asked in the procedure steps 5 and 7 and discuss your results. From the graphs plotted calculate the voltage regulations for load powers of 60W, 70W and 80W respectively under different loading conditions (resistive, resistive-inductive and resistive-capacitive) and compare the results. 2. Do the calculation asked in procedure step 9 and discuss your results. 7 3. A three-phase transmission line has reactance of 100 per phase. The sending-end voltage is 100 kV and the receiving-end voltage is also regulated to be 100 kV by placing a bank of static capacitors in parallel with the receiving-end load of 50 MW. Calculate (a) the reactive power supplied by the capacitor bank (b) the reactive power supplied by the sending-end side (c) the voltage drop in the line per phase (d) the phase angle between the sending-end and receiving-end voltages and (e) the apparent power supplied by the sending-end side. 4. If the 50 MW load in Exercise 3 is suddenly disconnected calculate the receiving-end voltage which would appear across the capacitor bank. What precaution, if any, must be taken? 5. If a transmission line were purely resistive, would it be possible to raise the receiving-end voltage by static capacitors? 6. State briefly what you have learned from this experiment. 8 Experiment # 2 PARAMETERS WHICH AFFECT REAL AND REACTIVE POWER FLOW Objectives To compare the flow of real and reactive power when sender and receiver voltages are different, but in phase. To perform the flow of real and reactive power when sender and receiver voltages are equal, but out of phase. To analyze the flow of real and reactive power when sender and receiver voltages are different and out of phase. Introduction Transmission lines are designed and built to deliver electric power. Power flows from the generator (sender end) to the load (receiver end). But, in complex interconnected systems, the sender and receiver ends may become reversed depending upon the system load conditions which, of course, vary throughout the day. Power in such a line may flow in either direction. The character of the load also changes from hour to hour, both as to kVA loading and as to power factor. How, then, can we attempt to understand and solve the flow of electric power under such variable loading conditions, further complicated by the possible reversal of source and load at the two ends of the line? We can obtain meaningful answers by turning to the voltage at each end of the tine. In Fig.1 a transmission line having a reactance of X (per phase) has sender and receiver voltages of E1 and E2 V respectively. (A transmission line is both resistive and reactive, but we shall assume that the reactance is so much larger that the resistance may be neglected) If we allow these voltages to have any magnitude or phase relationship, we can represent any loading condition we please. In other words, by letting E 1 and E2 take any values and any relative phase angle, we can cover all possible loading conditions which may occur Sender and receiver voltages are different and out of phase. Referring to Fig. 1, both E1 and E2 are phasors with different magnitude and out of phase. X SENDER E1 E2 I RECEIVER Fig.1: Transmission line The voltage drop along the line is E1- E2; consequently, for a line having a reactance of X Ω, the current I is given by I= E1 E 2 jX when E1 – E2 is the phasor difference between the sending- and receiving-end voltages. If we know the value of E1 and E2, and the phase angle between them, it is a simple matter to find the current I, knowing the reactance X of the line. From this knowledge we can calculate the real and reactive power, which is delivered by the source and received by the load. Suppose, for example, that the properties of a transmission line are as follows: 9 Line reactance per phase, X = 100 Sender voltage (E1) = 20 kV Receiver voltage (E2) = 30 kV Receiver voltage lags behind sender voltage by 26.5°. These line conditions are represented schematically in Fig. 2. From the phasor diagram in Fig. 3, we find that the voltage drop (E1 – E2) in the line has a value of 15 kV. The current I has a value of 15 kV/100 = 150 A and it lags behind (E1 – E2) by 90°. From the geometry of the figure, we find that the current leads E 1 by 27°. The active and reactive power of the sender and the receiver can now be found. X=100 E1=20kV S 26.5 E1=20k V E2=30k V R Fig. 2: Transmission line and phasor diagram of voltages E2=30kV 90° I = 150 A 27° E1 = 20 kV 53.5° E1 – E2 = 15 kV 26.5° E2 = 30 kV Fig. 3: Phasor diagram Note: When determining the sine and cosine of the angle between voltage and current, the current is always chosen as the reference phasor. Consequently, because E1 lags behind I by 27°, the angle is negative. The real power delivered by the sender is, 150 A x 20 kV x cos (-27°) = +2670 kW. The real power received by the receiver is, 150 A x 30 kV x cos (-53.5) = +2670kW. The reactive power delivered by the sender is, 150 A x 20 kV x sin (-27°) = -1360 kvar. The reactive power received by the receiver is, 150 A x 30 kV x sin (-53,5°)= -3610 kvar. (Note that equations for real power and reactive power given in the lab sheet for Experiment-1 can also be used for the above calculation.) Based on the results calculated above, if wattmeters and varmeters were placed at the sender and receiver ends they would give readings as shown in Fig. 4. This means that active power is flowing from the sender to the receiver, and owing to the absence of line resistance, none is lost in transit. 150A +2670 kW S Real Power -1360 kvar +2670 kW -3610 kvar Reactive Power Real Power Reactive Power Fig. 4: Direction of real and reactive power flow R However, reactive power is flowing from receiver to sender and, during transit, 3160 - 1360 = 2250 kvar are consumed in the transmission line. This reactive power can be checked against Line kvar = I2X = 1502 x 100 = 2250 kvar. 10 It will be noted that this is not the first time that we have found real power and reactive power flowing simultaneously in opposite directions. Sender and receiver voltages are different, but in phase. When the voltages at the sender and receiver ends are in phase, but unequal, reactive power will flow. The direction of flow is always from the higher voltage to the lower voltage. Consider a transmission line in which the voltages at the sender and receiver ends are 30 kV and 20 kV respectively and the line reactance is 100 (Refer to Fig. 5). X = 100 ES1 3 I E1=30 kV E2=20kV E2=20kV E1=30kV R Fig. 5: Transmission line and phasor diagram The voltage drop in the line is 10 kV and the current is 10 kV/100Ω = 100 A as shown in Fig. 6. E2 = 20kV E1 = 30kV E1 – E2 = 10kV I = 100A Fig. 6 Phasor diagram showing current and voltages The real power delivered by the sender end is, 100 A x 30 kV x cos (+ 90°) = 0 W. The real power received by the receiver is, 100 A x 20 kV x cos (+90°) = 0 W. The reactive power delivered by the sender end is, 100 A x 30 kV x sin ( + 90°) = + 3000kvar. The reactive power received by the receiver is 100A x 20 kV x sin ( + 90") = +2000kvar. If wattmeters and varmeters were placed at each end, the readings would be as shown in Fig. 7. 100A S 0 kW +3000 kvar Real Power Reactive Power +2000 kvar 0 kW Real Power Reactive Power R Fig. 7 Direction of real and reactive power flow Reactive power flows from the sender to the receiver, and 1000 kvar are absorbed in the transmission line during transit. As can be seen, reactive power flows from the high-voltage to the low-voltage side. Sender and receiver voltages are the same, but out of phase. Real power can only flow over a line if the sender and receiver voltages are out of phase. The direction of power flow is from the leading to the lagging voltage end. Again, it should be noted that this rule applies only to transmission lines, which are mainly reactive. The phase shift between the sender and receiver voltages can be likened to an electrical "twist", similar to the mechanical twist which occurs when a long steel shaft delivers mechanical power to a load. Indeed, the greater the electrical "twist" the larger will be the real power flow. However, it is found that it attains a maximum when the phase angle between the 11 sender and receiver ends is 90°. If the phase angle is increased beyond this (by increased loading) it will be found that less real power is delivered. Consider a transmission line in which the voltages at each end are equal to 30 kV and the receiver voltage E1 = 8. 30kV lags behind the sender by 30°. The line reactance is 100 , and the circuit is shown in Fig. X = 100 S E1 = 30kV I E2 =30kV 30 R Fig. 8 Line with phase angle difference between E 1 and E2 and phasor diagramE2 =30kV The voltage drop in the line (E 1 - E2) is found to be 15.5 kV. So the current I =15500/100 = 155 A and it lags (E1 - E2) by 90o, as shown in Fig. 9. E1 = 30kV E1 – E2 = 15.5kV 15o 15o I E2 = 30kV Fig. 9 Phasor diagram showing voltages and current Taking the current as the reference phasor, we can find the real and reactive power associated with the sender and the receiver ends as shown in Fig.10. 155A S +4500 kW Real Power +1200 kvar +4500 kW -1200 kvar R Fig. 10 Real and reactive in the line Reactive Power Real power Power flow Reactive Power Sender End Real power delivered = 30 kV x 155 A x cos (+15°) = +4500 kW, Reactive power delivered = 30 kV x 155 A x sin (+ 15°) = +1200 kvar. Receiver End Real power received = 30 kV x 155 A x cos (-15°) = + 4500 kW. Reactive power received = 30 kV x 155 A x sin (- 15) = - 1200 kvar. The sender delivers both active and reactive power to the line and the receiver absorbs active power from it. However, the receiver delivers reactive power to the line, so that the total reactive power received by the line is 2400 kvar. This example shows that a phase shift between sender and receiver voltages causes both real and reactive power to flow. However, for angles smaller than 45 the real power considerably exceeds the reactive power. 12 EQUIPMENT REQUIRED DESCRIPTION Resistive Load Inductive Load Three-Phase Transmission Line Capacitive Load Three-Phase Regulating Autotransformer AC Voltmeter Three-Phase Wattmeter/Varmeter Phase Meter Power Supply Connection Leads MODEL 8311 8321 8329 8331 8349 8426 6446 8451 6821 9128 PROCEDURE WARNING. High voltages are present in this Laboratory Experiment! Do not make any connections with the power on! In order to convey a sense of realism to the terms "sender" and "receiver" two consoles will be used in the following experiments. A transmission line will connect the two consoles (Station A and B) and the active and reactive power flow between them will be studied. The experiment will be conducted in three parts. Part-I: Sender and receiver voltages unequal, but in phase. Part-II; Sender and receiver voltages equal, but out of phase. Part-III: Sender and receiver voltages unequal, and out of phase Note that there will be minor changes only in the connections between the parts of the experiments. Don’t remove all the connections, simply do the changes only. Verify your connections for each part with your lab supervisor PART-I: Sender and Receiver voltages unequal, but in phase 1. Connect a three-phase transmission line between terminals 4, 5, 6 (variable AC output) of two consoles, one of which is designated as Station A and the other, Station B. Connect the two three-phase wattmeters/varmeters (6446) at each end as well as a phase meter (8451) as shown schematically (single line diagram) in Fig. 11. Note that watt/var meters and phase meter need 24V AC supply provided in the power supply unit. Verify your connections with the lab supervisor before switching on the power supply. 0 – 500 V E1 STATION A 4 0-415 V 3-phase 0 – 500 V 8451 E2 STATION B O 5 O 6 O Q1 P1 Q2 P2 8329 8446 O 4 O 0-415 V 5 3-phase O 6 8446 8821 8821 Fig. 11 Sender and Receiver voltages unequal, but in phase 2. With the transmission line switch S open, adjust the line-to-line voltages so that E1 and E2 are both equal to 300 V and observe that the phase angle difference between terminals 4-5 of station A and terminals 4-5 of station B is zero. Is phase angle zero? Yes No 13 3. Without making any changes, measure the phase angle between terminals 4-5 of station A and terminals 5-4 of station B. Phase angle is __________ 4. Without making any changes, measure the phase angle between terminals 4-5 of station A and terminals 5-6 of station B. Phase angle is lagging Phase angle is leading 5. Measure the phase angle between terminals 4-5 of station A and terminals 6-4 of station B. Phase angle is lagging Phase angle is leading 6. By measuring all phase angles between line and neutral of station A and B prove that the phasor diagrams for both stations are as given in Fig. 12. The purpose of this preliminary phase angle check is to familiarize with the phase angles between the voltages at the two stations. 4A 4B Rotation Rotation 120° N 120° 120° 120° 6A N 120° 120° 5A 6B 5B Fig. 12. The phase angles between the voltages at the two stations. 7. Close the Three-Phase Transmission Line switch, S with E1 = E2 = 300V, and the transmission line impedance = 200 . Observe the three-phase wattmeter/varmeter readings. There should be no significant power exchange. P1 = _________ W P2 = _________ W Q1 = _________ var Q2 = _________ var 8. Raise station A voltage to 350 V and observe power flow. P1 = _________ W P2 = _________ W Q1 = _________ var Q2 = _________ var Which of the two stations would be considered to be the sender? _________________________________________________________________ 9. Reduce station A voltage to 300 V and raise station B voltage to 350 V. Observe power flow. P1 = _________ W P2 = _________ W Q1 = _________ var Q2 = _________ var Which station would be considered to be the sender? ________________________________________________________________ 14 10. Vary the voltages of both station A and station B and check the truth of the statement that reactive power always flows from the higher voltage to the lower voltage. PART-II: Sender and Receiver voltages equal, but out of phase Use the Three-Phase Regulating Autotransformer to shift the phase of station A by 15°. The phase shift (lag or lead) is obtained by changing the connections of a three-phase transformer by means of a tap switch. When the position of the tap-switch in the regulating transformer is altered, the secondary voltage will a) be in phase with the primary, b) lag the primary by 15° or, c) lead the primary by 15". 11. Connect the above phase-shifting autotransformer to the variable AC terminals 4,5,6 of station A as shown schematically in Fig. 13. Open the switch (S) in the transmission line or disconnect the transmission line. Adjust the voltage at stations A and B to 350 V. With the Phase Meter determine the phase angle of the secondary voltage 4, 5, 6 of the phase shifting transformer with respect to the variable AC terminals 4, 5, 6 of the Power Supply of Station B. Record your readings for the three positions of the phase-shift tap switch in Table 1. 0 – 500 V E1 0-415 V 3-phase 4 O 5 O 6 O Phase shifting Autotransformer P1 0 – 500 V 8451 E2 Q1 P2 Q2 8329 8349 8446 O 4 O 0-415 V 5 3-phase O 6 8446 8821 8821 Fig. 13 Phase shifting of voltages at Station A CAUTION!! KEEP THE SWITCH OF THE TRANSMISSION LINE OPEN FOR STEPS 11 AND 12 Tap switch position in degree Table 1 Phase angle (Lag/Lead) E1 in V E2 in V 0 + 15 -15 Note: The buck-boost tap switch must be kept at zero and the correct phase sequence must be applied to the primary of the transformer. 12. Check that the phase-shift is the same for all the three phases, and that all voltages are balanced. 13. Connect a three-phase, 400- transmission line between secondary terminals 4, 5, 6 of the threephase phase shifting autotransformer and the power supply terminals of station B by closing the switch (see Fig.14). Change the tap switch position and record your results in Table 2. 15 0 – 500 V E1 0-415 V 3 phase 4 O 5 O 6 O 0 – 500 V 8451 E2 REGULATING AUTOTRANSFORMER Q1 P1 P2 Q2 8329 8349 8821 8446 O 4 O 0-415 V 5 3 phase O 6 8446 8821 Fig. 14 Sender and Receiver voltages equal, but out of phase Table 2 Tap Switch Position in degree E1 V P1 W Q1 var E2 V P2 W Q2 var Phase angle in degree 0 + 15 -15 Does this experiment proves the statement that real power flows from the leading voltage towards the lagging voltage side of a transmission line? Yes No (Caution!! First DIRECTLY SWITCH OFF the main power supplies of both sending end and receiving end and then set the supply autotransformers to zero voltage. Make changes in connection for PART-III) PART-III: Sender and Receiver voltages unequal, and out of phase In the following steps we shall connect passive loads (resistive, inductive, and capacitive) at the receiver end of the line. The object of the experiment is to show that a phase shift between sender and receiver voltages occurs only when real power is being delivered to the load. 14. Using only one console, set up the experiment as shown in Fig. 15, setting E1 = 380 V and using a star-connected Resistive Load of 1200 per phase and a 200- Transmission Line. Take readings and record your results in Table 3 0 – 500 V E1 0-415 V 3-phase 4 O 5 O 6 O 8821 15. P1 8451 0 – 500 V E2 P2 Q1 Q2 LOAD 8329 8446 8446 Fig. 15 Transmission line with different loadings Repeat procedure step 14 using an readings and record your results in Table 3. 16 Inductive Load of 1200 8311 8321 8331 /phase. Take 16. Repeat procedure step 14 using readings and record your results in Table 3. Step Load E1 V 14 RESISTIVE 15 INDUCTIVE 16 CAPACITIVE a Capacitive Table 3 P1 Q1 W var Load E2 V of P2 W 1200 /phase. Q2 var Phase shift degree Take Exercise 1. A three-phase transmission line has a reactance of 100 and at different times throughout the day it is found that the sender and receiver voltages have magnitude and phase angles as given in Table 4. In each case calculate the real and reactive power of the sender and receiver and indicate the direction of the power flow. The voltages refer to line-to-line voltages. Table 4 SENDER 2. ES kV ER kV Phase angle 100 100 60 ES Leads ER 120 100 60 ES Leads ER 100 120 60 ES Leads ER 120 100 120 100 30 Es Lags ER 0° P MW Q Mvar RECEIVER P MW Q Mvar In Question 1 assume that ES = ER = 100 kV at all times but that the phase angle between them changes in steps of 30° according to the Table 5. Calculate the value of the real power in each case as wall as its direction of flow, knowing that ER lags Es in each case. degree Table 5 SENDER, P MW RECEIVER, P MW 0 30 60 90 120 150 180 Plot a graph of real power vs phase angle. Is there a limit to the maximum power which such a line can deliver under the static voltage conditions? Yes No 3. State briefly what you have learnt from this experiment. 17