Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
1. If sin(alpha)=1/5 where alpha is in quadrant II, find the remaining five trigonometric functions of alpha. sin 2 cos 2 1 is in the 2nd quadrant, so cos is negative. 2 2 6 1 cos 1 sin 2 1 5 5 1 sin 6 tan 5 cos 12 2 6 5 1 1 cot 2 6 tan 6 12 1 1 5 6 sec cos 12 2 6 5 1 1 cos ec 5 sin 1 5 2. Given that sin(alpha)= -2/3 and cos(alpha)= -root5/3>0, find the remaining four trigonometric functions. 2 5 sin ,cos , so sin 0 and cos >0, then is in the 4th quadrant. 3 3 2 sin 2 5 tan 3 cos 5 5 3 1 1 5 cot tan 2 2 5 5 1 1 3 5 sec cos 5 5 3 1 1 3 cos ec sin 2 2 3 3. Sketch a graph of y=3cos(2theta+pi) using either transformations or the "5 key points" method. Be sure to label the key points throughout the stages if you use transformations. 3 y 3 2 1 /4 0 0 /2 3/4 -1 -2 -3 -8 -3 The period of the function is ,-2the amplitude of the function is 3. -6 -4 0 2 The five key points are 3 (0, 3), ( ,0), ( ,3), ( ,0), ( , 3) 4 2 4 4 6 4. Sketch a graph of y= -tan(theta-(pi/4)) using transformations. Be sure to label the key points and asymptotes throughout the stages. y tan( ) tan( ) 4 4 First we graph y tan( ) , then the shift this curve to the right by to get y. 4 8 200 y=tan(-) 150 100 50 0 -/2 -3/2 3/2 /2 0 -50 -100 -150 -200 -5 -4 -3 -1 Now shift this graph-2 to right by 200 0 4 5 ) to get1 y 2tan( 3 ) tan( 4 4 4 y=tan(--/4) 150 100 50 0 -/4 -5/4 -3/4 7/4 3/4 0 /4 5/4 -50 -100 -150 -200 5 3 7 4 In the-4above graph,-2 x , 0 , , are2 the asymptotes. 4 4 4 4 3 5 When x ,0, , y=0. 4 4 6 5. Sketch a graph of y=2csc(2theta+pi) using transformations or the "5 key points" method using the sine function as a guide. Be sure to label the key points and asymptotes throughout the stages. 150 y=2ccs(2+) 100 50 0 -/2 -3/2 0 /2 3/2 -50 -100 -150 -4 2 -3 -2 1 The period of the function is -1 . 0 2 3 1 1 3 In the above graph, x , , , are asymptotes. 2 2 2 2 2 6. State the amplitude, range, period and phase shift of y= -4sin(2x-pi) y 4sin(2 x pi) 4sin(2 x) (1) So the amplitude is 4 1 sin 2x 1, then 4 y 4 , this is the range. 2 . The period T 2 As can be found from equation (1), there is no phase shift. 8. Find the exact value of cos(inverse sin(-1/3)) 1 Assume sin 1 , then is in quadrant, so cos is positive. 3 1 We have sin 3 2 2 2 1 cos 1 sin 1 3 3 2 3 4 2 2 1 cos sin 1 cos 3 3 9. Find the exact value of sec(inverse tan(1/2)) 1 Assume x tan 1 , then x in the first quadrant, all trigonometric functions are 2 positive. 1 tan x 2 1 sin 2 x cos 2 x 2 2 sec x tan x 1 cos 2 x cos 2 x cos 2 x So sec2 x 1 tan 2 x 2 5 1 sec x 1 tan 2 x 1 2 2 That is 5 1 sec tan 1 2 2 10. Solve: 2cos(theta)+root3=0 2cos 3 0 3 2 So, could be in quadrants II and III. 5 5 5 5 , 2 , 4 , , 2k , where k =0, 1, 2, 3, .. When in quadrant II, 6 6 6 6 7 7 7 7 , 2 , 4 , , 2k where k =0, 1, 2, 3 , .. When in quadrant III, 6 6 6 6 cos 11. Find the exact value of sin105degrees sin105 sin(180 105 ) sin 75 Now we need to use double angle equations to find sin75. 1 cos 2 x 1 cos 2 x cos 2 x 1 2sin 2 x sin 2 x sin x 2 2 1 cos(2 75) 1 cos150 sin 75 2 2 So 1 3 2 2 3 2 2 sin105 sin 75 2 3 2 12. Find the exact value of cos(7pi/12) 7 cos cos sin 12 12 2 12 It is obvious we know cos 6 problem to find sin 12 sin 12 1 cos 2 6 3 , so we still need to use the equation in the previous 2 3 2 2 3 2 2 1 So cos 7 2 3 sin 12 12 2 13. Use the fact that if cos(alpha)=1/root5, 0<alpha<pi/2 and sin(beta)= -4/5, -pi/2<beta<0 1 cos 5 0 2 2 2 1 sin 1 cos 1 5 5 4 sin , 5 2 2 0 2 3 4 cos 1 sin 1 5 5 2 A) Find the exact value of sin(alpha-beta) 2 3 1 4 6 4 2 5 sin( ) sin cos cos sin 5 5 5 5 5 5 5 5 B) Find the exact value of sin(2alpha) sin 2 2sin cos 2 2 1 4 5 5 5 C) Find the exact value of cos(beta/2) cos 2cos 2 1 2 1 cos cos 2 2 2 1 cos cos 2 2 3 5 42 5 2 5 5 1