Download Mat 241 Chapter 15 Test

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Mat 241 Chapter 15 Test
2010 A & B KEY
Name___________________________________
Professor Schultz
#1. (5 pts) The shown integral is somewhat “evil” in the order of integration
specified. To overcome this obstacle, compute the exact integral by
reversing the order of integration.
 3 x2
ye
ye
ye
0 1 x8 dxdy  0 0 x8 dydx  0  3x8

y3
du
let u  x 2 ,  xdx
2
8 2
2 x3
2 x2
2 x2
2
x3
0
2
3

2
2
x2
x 3  ex

1xe
dx 
0 3x8 dx  0 3 dx


4
4
eu
eu
1
  dx 
  e4  1 
6
6 0 6
0
#1. (5 pts) The “sin-log” function has no known antiderivative. To overcome
this obstacle, compute the exact integral by reversing the order of
integration. Note: log(x) denotes the natural logarithm ln(x) for most
mathematicians, engineers, and computer languages. The notation ln is for
greenhorns.
e
sin  x 
0 y log  x dxdy  1
e
1 e
log x 

0
log( x )
e

sin  x 
sin  x  y
dx
dydx   

log  x 
log
x
  0 
1

e
 sin  x  log( x) sin  x   0 
e
 

dx   sin  x dx   cos  x  1
log  x 
log  x  
1
1
  cos  e   cos 1  cos 1  cos  e 
e
#2. (10 pts) Using a double or triple integral to find the volume of the solid
tetrahedron with vertices:
 0,0,0  , 0,0,1 ,  0,2,0  , and 2,2,0  .
To determine the plane’s equation we do the following:





1. Select a vertex from: 0,0,1 , 0,2,0 ,or 2,2,0 .
2. Create two vectors using the selected point and the other two
remaining points.
3. Utilizing those two vectors we compute the cross-product.
4. With the normal vector and one of the three points we determine the
plane’s equation upon which we can integrate to get our desired
volume.
P  0,0,1  ,Q  0,2,0  ,and R 2,2,0 
PQ  2,0,0 ;PR  2, 2,1
i
PQ  PR  2
j
k
0
0   0  0  i   2  0  j   4  0  k  0,2,4
2 2 1
The plane's equation is:
0  x - 0   2  y  0   4  z  1   0  2y  4z  4  0
z 1
2 2
V  
y
2
1
y
2

0 x 0
2
2
2
 

y
y2 
x2  

1dydx    1  dydx    y   dx    1   x   dx
2
4 x
4 

0 x
0
0
2 2
2



x2
x3 x2 
8 4 8 2
   1   x dx   x     2    
4
12 2  0
12 2 12 3


0
2
Of course, we could just use the 7th grade formula:
Vpyramid 
1
1 1
2
 area_ of _ the _base height    2  2   1 
3
3 2
3

#3. (5 pts) Evaluate the following integral exactly.
A perfect candidate for polar coordinates.

 x2
 
 
sin  x 2  y 2 dydx
0
 
   sin r2 rdrd let u  r2 ;
0 0
 

du
 rdr
2


1
1

  sin udud    cosu 0 d     1  1 d   d  
20
20
0 0
0
#4. (6 pts) For the pictured solid assume that the density is proportional to
the distance to the xz - plane. The solid is formed by the following
surfaces:
y  x, z  1  x2 , x  1, y  2x
A. Set – up ONLY! An integral to compute the mass of the solid in the
dydzdx order. ALSO sketch the plane projection.
1 1 x2 2x
mass  
  kydydzdx
0
2
0
x
z
1.8
1.6
1.4
1.2
1
0.8
z  1x2
0.6
0.4
0.2
x
-0.8
-0.6
-0.4
-0.2
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
-0.2
B. Set – up ONLY! An integral to find
sketch the plane projection.
M xz
in the dzdydx order. ALSO
1 2x 1 x2
Mxz   
0 x
y

ky 2dzdydx
0
4.5
4
3.5
3
2.5
2
1.5
R
1
yx
0.5
x
-0.8
-0.6
-0.4
-0.2
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
I y in the dydxdz order. ALSO
C. Set – up ONLY! An integral to find
sketch the plane projection.
1 1z2 2x
Iy  
0
  x
0
2
 z2 kydydxdz
x
2
z
1.8
1.6
1.4
1.2
1
0.8
z  1x2
0.6
0.4
0.2
x
-0.8
-0.6
-0.4
-0.2
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
-0.2
#5. (10 pts) FIND THE VOLUME of the solid that is bounded between the
two cones given by:
z  x 2  y2 and
z  3 x2  y2 
And between the two hemi-spheres:
z  4  x 2  y2 and
z  1  x2  y2
To help you, the projection in the yz-plane is shown below. The area to be
swept into a volume is shown as
z
z  3x2  y2 
z  4 x2  y2
z  x2  y2
z  1  x2  y2
y
Looks like a case for spherical coordinates to me! I’ll need to find ranges
for , ,and  .
From the picture:
zinnersphere  1  x 2  y2  x 2  y 2  zoutsidecone
1  r2  r2  r 
1
2
and
zoutersphere  4  x 2  y 2  3  x 2  y 2   zinsidecone
4  x2  y2  3  x2  y2 
4  r2  3r2  r  1
Our first phi angle is:
z
z  3x2  y2 
z  4 x2  y2
z  x2  y2
1
2
z  1x y
2
2


6
y
Our second phi angle is:
z
z  3x2  y2 
z  4 x2  y2
z  1  x2  y2
z  x2  y2
1/sqrt(2)


4
1
y
So we have:


1    2,    ,0    2
6
4
V

2 4 2

2 4
0  1
6
6
2
   sin ddd 

0   3


2 4

7
 sin dd    sin dd

30
1
3 2
6
2
2
2

7
7 
7  2
3

 
4
   cos   d     cos    cos     d    

 d
30
3
4
6
3
2
2






6
0
0 

7

6

3 2
2
  d  73 
3 2

0
#5. (10 pts) Calculate the exact volume of the child’s plastic chair formed
by the intersection of
x2  y2  1 ,
2
2
the two surfaces z  x  5 and z  4  y
the cylinder
and having
y0
(Note: The chair has been rotated so you can see inside it.)
Let x and y equal zero to determine top and bottom surfaces.
z  x 2  5 and z  4  y 2
when x  y  0
z  5 & z  4
We are integrating over the circle x 2  y 2  1 with y  0.
1
V 
1
1  x2 4  y2
 
0
x 5
2
 1 4 r2 sin2 
1dzdydx  

rdzdrd
0 0 r cos  5
2
2
 1
   4  r2 sin2    r2 cos2   5  rdrd
0 0
 1
  9  r2 sin2   r2 cos2  rdrd
0 0
 1
  9  r2 rdrd
0 0
 1
  9r  r 3 drd
0 0
1

 9r2 r 4 
17
17
  d    d 
 
4
4 0
4 0
2
0
