Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Basic Trigonometry. Angles in trigonometry. How do we measure them? http://www.sosmath.com/trig/Trig1/trig1/trig1.html The unit of measurement for angles: radian, and degree. If r is the radius of the circle above, the length of the string s around it (from the point P to Q) is s r when is expressed in radians. When is 1 radian, the length of s is r . Conventionally, we have radians 180 (degrees) Therefore, 2 radians = 360 radians = 90 2 etc. The trigonometric functions. Consider a right angled triangle below. h a b By Pythagoras theorem, we have a 2 b2 h2 … (1) We also define a h b cos( ) cos h sin a tan cos b cos b cot sin a 1 h cosec = sin a sin( ) sin … (2.1) … (2.2) … (2.3) … (2.4) … (2.5) sec 1 h cos b … (2.6) Given these we see: a. The | sin | and | cos | are bounded above by 1.0 and bounded below by 0.0. a 2 b2 a 2 b2 2 2 1 b. sin cos 2 2 2 h h h c. 1 tan2 sec2 d. 1 cot 2 cosec2 Some trigonometric results for specific angles. Consider the triangle below. 2 1 45 1 1 4 2 1 cos 45 cos 4 2 sin 45 sin Now, on this equilateral triangle, we have 60 1 1 60 60 1 If we split this triangle into two equal parts, we would have 1 1 0.5 0.5 Assume length of the perpendicular drop = x Then 1 x 2 0.52 sin 60 sin 3 x 2 3 2 3 3 i.e. x 2 4 cos 60 cos 3 1 2 3 1 and sin 30 sin 6 2 6 2 The graphs of trigonometric functions. Similarly, cos 30 cos This is a plot of y sin for 2 2 Next is the plot of both y sin and y cos over the same domain. Next is the plot of y tan , again on the same domain http://oolong.co.uk/trig.htm To get values for trigonometric functions at some “traditional” angles (in degrees), we construct a table in the following way: angles 0 30 45 60 90 sin 0 1 2 3 4 cos 4 3 2 1 0 Next divide each entry in the second and third rows by 4 angles 0 30 45 60 90 sin 0 1/4 1/2 3/4 1 cos 1 3/4 1/2 1/4 0 Next take square root of each element. Now the elements correspond to the actual values of the functions at these angles (expressed in degrees). angles 0 30 45 60 90 Sin Cos 0 1/2 1 / 2 3 /2 1 1 3 /2 1 / 2 1/2 0 Other identities. a. sin( x) sin x b. cos( x) cos x … (3.1) … (3.2) Note the asymmetry/symmetry of the two functions. Sum/Difference identities. a. sin( ) sin cos cos sin b. sin( ) sin cos cos sin c. cos( ) cos cos sin sin d. cos( ) cos cos sin sin … (4.1) … (4.2) … (4.3) … (4.4) How do we prove (4.1)? Consider the diagram below. http://arc.iki.rssi.ru/mirrors/stern/stargaze/Strig5.htm Here sin( ) But DF DE EF DE CB R R R DE cos Therefore, DE DC cos . Also, DC DC sin . Therefore, DC R sin . Thus, R DE R sin cos Now, CB AC sin . Thus, CB AC sin . But, cos AC R Therefore, CB R cos sin . Thus, sin( ) sin cos cos sin (4.1) How about proving (4.3)? AF cos( ) R But AF AB FB AB EC EC sin . Thus, CD EC CD sin R sin sin Similarly, AB AC cos R cos cos Therefore, cos( ) cos cos sin sin (4.3) Given these, we can find out others. Example. 1. Expand tan(x y) tan( x y ) sin( x y ) sin x cos y cos x sin y cos( x y ) cos x cos y sin x sin y Divide both numerator and denominator by cos xcos y . We get, tan( x y ) tan x tan y 1 tan x tan y … (5.1) 2. How do we get expansions of sin 2 x , cos 2 x ? sin 2 x sin( x x) sin x cos x cos x sin x 2 sin xcos x … (5.2a) cos 2 x cos( x x) cos x cos x sin x sin x cos2 x sin 2 x … (5.2b) 3. Compute the values of cos( ), cos( ) cos( ) cos cos sin sin cos 4. What is the value of sin 135 ? 135 4 sin( ) sin cos cos sin 4 4 4 1 2 Inverse functions. If sin x then the angle in radian is sin 1 x (6.1) Similarly, cos1 y cos y (6.2) And, tan1 z implies tan z (6.3) These inverse functions are also known as arcsin, arcos, arctan, respectively. Thus, sin 1 arcsin sec1 x arc sec x , etc. Ok. Given this definition, how do we add to inverse functions which are basically angles? We want to find the sum sin 1 x sin 1 y . Let sin x . This means cos (1 x 2 ) . Similarly, let sin y implying cos (1 y 2 ) . Now, sin( ) sin cos cos sin x 1 y2 y 1 x2 Therefore, sin 1 x 1 y 2 y 1 x 2 But the LHS is sin 1 x sin 1 y . Therefore, we conclude, sin 1 x sin 1 y sin 1 x 1 y 2 y 1 x 2 Examples. sin / 6 0.5 Therefore, sin 1 0.5 6 Notice that there are many angles for which sin are half. We choose the smallest angle within the positive domain that would satisfy the result. If we know the angle is going to be negative we choose the largest negative angle on the given domain. 2. The shadow of a tree around afternoon appears to be 30 ft long with the sun at an angle of 300 to the horizon. What is the height of the tree? tree shadow Now, tan 6 1 tree 3 shadow Length of the tree = length of the shadow 1/ 3 = 17.32ft