• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Generating Random Numbers
Generating Random Numbers

... 2.3 Generating Random Numbers Before we begin this section, it is important to realize that a digital (VonNeumann architecture) computer cannot generate sequences of random numbers. Only after you accept and understand this will we proceed to generate sequences of random numbers with a computer. At ...
Chapter 1 THE INTEGERS
Chapter 1 THE INTEGERS

... Counting numbers ...
16 - 25 ± 4 1 04 .0 81 yx 1 + x 25 10 + + xx 5 3 8
16 - 25 ± 4 1 04 .0 81 yx 1 + x 25 10 + + xx 5 3 8

Random Variable
Random Variable

...  Can list all the outcomes ...
Lecture 10, February 3
Lecture 10, February 3

Continuity - RangerCalculus
Continuity - RangerCalculus

AbsVal Recip 1 - Absolute Value shorter_2
AbsVal Recip 1 - Absolute Value shorter_2

Chapter 7 - Wells` Math Classes
Chapter 7 - Wells` Math Classes

... An SRS of 400 American adult is asked, “What do you think the most serious problem facing our schools?” Suppose that in fact 40% of all adults would answer “violence” if asked this question. The proportion p̂ of the sample who answered “violence” will vary in repeated sampling. In fact, we can assig ...
How to write a solution set If the shading is on the outside of the number  line like: 
How to write a solution set If the shading is on the outside of the number  line like: 

2016 - CEMC
2016 - CEMC

CS 173: Discrete Mathematical Structures, Spring 2009 Homework 9
CS 173: Discrete Mathematical Structures, Spring 2009 Homework 9

2.2
2.2

... 3. Identify the equation that does not belong with the other three. a. N + 14 = 27 b. 12 + N = 25 c. N - 16 = 29 d. N - 4 = 9 4. Determine whether each sentence is sometimes, always, or never true. a. X + X = X b. X + 0 = X 5. Determine the value for each statement below. a. If x - 7 = 14, what is t ...
Math 1314 Section1.7 Notes Absolute Value Equations and
Math 1314 Section1.7 Notes Absolute Value Equations and

Variance, the law of large numbers
Variance, the law of large numbers

Chapter 8 - jonesmth110
Chapter 8 - jonesmth110

Absolute Value Equations and Inequalities
Absolute Value Equations and Inequalities

2-7 Inequalities.notebook - Germantown School District
2-7 Inequalities.notebook - Germantown School District

Mean of a Discrete Random Variable - how-confident-ru
Mean of a Discrete Random Variable - how-confident-ru

... Statistical estimation and the law of large numbers Law of large numbers Draw independent observations at random from any population with finite mean (μ). Decide how accurately you would like to estimate the mean. As the number of observations drawn increases, the mean of the observed values eventua ...
Week 5 Topics - Computing Sciences
Week 5 Topics - Computing Sciences

ACTSSOLHW8
ACTSSOLHW8

Honors Algebra II
Honors Algebra II

Absolute Values - silverleafmath
Absolute Values - silverleafmath

Factorizing If (2X + 1) is a factor of the expression 6 x2 + 5x +
Factorizing If (2X + 1) is a factor of the expression 6 x2 + 5x +

random numbers
random numbers

X - IDA.LiU.se
X - IDA.LiU.se

< 1 ... 5 6 7 8 9 10 11 12 13 ... 16 >

Expected value



In probability theory, the expected value of a random variable is intuitively the long-run average value of repetitions of the experiment it represents. For example, the expected value of a dice roll is 3.5 because, roughly speaking, the average of an extremely large number of dice rolls is practically always nearly equal to 3.5. Less roughly, the law of large numbers guarantees that the arithmetic mean of the values almost surely converges to the expected value as the number of repetitions goes to infinity. The expected value is also known as the expectation, mathematical expectation, EV, mean, or first moment.More practically, the expected value of a discrete random variable is the probability-weighted average of all possible values. In other words, each possible value the random variable can assume is multiplied by its probability of occurring, and the resulting products are summed to produce the expected value. The same works for continuous random variables, except the sum is replaced by an integral and the probabilities by probability densities. The formal definition subsumes both of these and also works for distributions which are neither discrete nor continuous: the expected value of a random variable is the integral of the random variable with respect to its probability measure.The expected value does not exist for random variables having some distributions with large ""tails"", such as the Cauchy distribution. For random variables such as these, the long-tails of the distribution prevent the sum/integral from converging.The expected value is a key aspect of how one characterizes a probability distribution; it is one type of location parameter. By contrast, the variance is a measure of dispersion of the possible values of the random variable around the expected value. The variance itself is defined in terms of two expectations: it is the expected value of the squared deviation of the variable's value from the variable's expected value.The expected value plays important roles in a variety of contexts. In regression analysis, one desires a formula in terms of observed data that will give a ""good"" estimate of the parameter giving the effect of some explanatory variable upon a dependent variable. The formula will give different estimates using different samples of data, so the estimate it gives is itself a random variable. A formula is typically considered good in this context if it is an unbiased estimator—that is, if the expected value of the estimate (the average value it would give over an arbitrarily large number of separate samples) can be shown to equal the true value of the desired parameter.In decision theory, and in particular in choice under uncertainty, an agent is described as making an optimal choice in the context of incomplete information. For risk neutral agents, the choice involves using the expected values of uncertain quantities, while for risk averse agents it involves maximizing the expected value of some objective function such as a von Neumann-Morgenstern utility function. One example of using expected value in reaching optimal decisions is the Gordon-Loeb Model of information security investment. According to the model, one can conclude that the amount a firm spends to protect information should generally be only a small fraction of the expected loss (i.e., the expected value of the loss resulting from a cyber/information security breach).
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report