• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Chapter 3
Chapter 3

... They are most suitable for use on computers and calculators. Their properties could be investigated mathematically. If the result of tests are satisfied . Then additional test is not necessary. By applying the same seed, se can generate the same sequence, which is useful for some application. This ...
archimedes squares the circle
archimedes squares the circle

... Archimedes’ brilliant idea was to square the circle. If you put a square inside a circle of unit diameter, one of the sides of the square will be proportional to the diameter in some fashion and once you know the side of the square it’s easy to find its perimeter, just multiply that value by 4. This ...
Chapter 4
Chapter 4

Student Activity DOC - TI Education
Student Activity DOC - TI Education

ABSOLUTNÍ HODNOTA
ABSOLUTNÍ HODNOTA

Full text
Full text

Simulation Examples - Department of Computer Science
Simulation Examples - Department of Computer Science

DAVID ESSNER EXAM IV 1984-85
DAVID ESSNER EXAM IV 1984-85

AMTH142 Lecture 14 Monte-Carlo Integration Simulation
AMTH142 Lecture 14 Monte-Carlo Integration Simulation

Probability Theory
Probability Theory

... 2.3 How many five-card hands of poker include five cards in the same suit that do not have consecutive ranks? This hand is called a flush. 2.4 How many five-card hand of poker include five cards of consecutive rank, representing two or more suits. This hand is called a straight. 2.5 How many five-ca ...
► Absolute Value Equations and Inequalities
► Absolute Value Equations and Inequalities

... from the indicated specification by as much as 0.0015 in. and still be acceptable. ...
Sequences A sequence is a pattern of numbers - Kelvin-2011
Sequences A sequence is a pattern of numbers - Kelvin-2011

Section 11.5
Section 11.5

Test Code : QR ( Short answer type ) 2005
Test Code : QR ( Short answer type ) 2005

... Classical definition of probability and standard results on operations with events, conditional probability and independence. Distributions of discrete type [Bernoulli, Binomial, Multinomial, Hypergeometric, Poisson, Geometric and Negative Binomial] and continuous type [Uniform, Exponential, Normal, ...
Lecture15
Lecture15

Numeric Functions
Numeric Functions

2.1 Variable Expressions
2.1 Variable Expressions

Absolute Value
Absolute Value

1 Vectors and matrices Variables are objects in R that store values
1 Vectors and matrices Variables are objects in R that store values

some applications of probability generating function based methods
some applications of probability generating function based methods

Subject CT6 – Statistical Methods May 2014 Examinations INDICATIVE SOLUTIONS
Subject CT6 – Statistical Methods May 2014 Examinations INDICATIVE SOLUTIONS

What if there was no Law? What if There Were No Law of Large
What if there was no Law? What if There Were No Law of Large

Random Variables and Measurable Functions.
Random Variables and Measurable Functions.

... the number of heads observed. Find the cumulative distribution function P [X ≤ x]. 8. A number x is called a point of increase of a distribution function F if F (x + ²) − F (x − ²) > 0 for all ² > 0 . Construct a discrete distribution function such that every real number is a point of increase. (Hin ...
Agenda 11/8 & 11/9
Agenda 11/8 & 11/9

The Monte-Carlo Method
The Monte-Carlo Method

< 1 2 3 4 5 6 7 8 9 ... 16 >

Expected value



In probability theory, the expected value of a random variable is intuitively the long-run average value of repetitions of the experiment it represents. For example, the expected value of a dice roll is 3.5 because, roughly speaking, the average of an extremely large number of dice rolls is practically always nearly equal to 3.5. Less roughly, the law of large numbers guarantees that the arithmetic mean of the values almost surely converges to the expected value as the number of repetitions goes to infinity. The expected value is also known as the expectation, mathematical expectation, EV, mean, or first moment.More practically, the expected value of a discrete random variable is the probability-weighted average of all possible values. In other words, each possible value the random variable can assume is multiplied by its probability of occurring, and the resulting products are summed to produce the expected value. The same works for continuous random variables, except the sum is replaced by an integral and the probabilities by probability densities. The formal definition subsumes both of these and also works for distributions which are neither discrete nor continuous: the expected value of a random variable is the integral of the random variable with respect to its probability measure.The expected value does not exist for random variables having some distributions with large ""tails"", such as the Cauchy distribution. For random variables such as these, the long-tails of the distribution prevent the sum/integral from converging.The expected value is a key aspect of how one characterizes a probability distribution; it is one type of location parameter. By contrast, the variance is a measure of dispersion of the possible values of the random variable around the expected value. The variance itself is defined in terms of two expectations: it is the expected value of the squared deviation of the variable's value from the variable's expected value.The expected value plays important roles in a variety of contexts. In regression analysis, one desires a formula in terms of observed data that will give a ""good"" estimate of the parameter giving the effect of some explanatory variable upon a dependent variable. The formula will give different estimates using different samples of data, so the estimate it gives is itself a random variable. A formula is typically considered good in this context if it is an unbiased estimator—that is, if the expected value of the estimate (the average value it would give over an arbitrarily large number of separate samples) can be shown to equal the true value of the desired parameter.In decision theory, and in particular in choice under uncertainty, an agent is described as making an optimal choice in the context of incomplete information. For risk neutral agents, the choice involves using the expected values of uncertain quantities, while for risk averse agents it involves maximizing the expected value of some objective function such as a von Neumann-Morgenstern utility function. One example of using expected value in reaching optimal decisions is the Gordon-Loeb Model of information security investment. According to the model, one can conclude that the amount a firm spends to protect information should generally be only a small fraction of the expected loss (i.e., the expected value of the loss resulting from a cyber/information security breach).
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report