• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
lectures 1-4
lectures 1-4

... stream, comparing with result of an equally long stream of truly random numbers would give. Need its mean, variance, and so on to assign a confidence level to the pseudorandom result. Example: divide the unit interval into M bins, count the occupancies of these bins, calculate the χ2 • Philosophical ...
// DOES RANDOM MEAN PURE CHANCE? It is hard to know if
// DOES RANDOM MEAN PURE CHANCE? It is hard to know if

Introduction to Probability Distributions
Introduction to Probability Distributions

VUB Mini Course   Notes Absolute Value & Order... Name___________ Page one ABSOLUTE VALUE
VUB Mini Course Notes Absolute Value & Order... Name___________ Page one ABSOLUTE VALUE

2.1 One-dimensional random variable and distribution
2.1 One-dimensional random variable and distribution

1112acc_vb1
1112acc_vb1

Solution Week 38 (6/2/03) Sum over 1 (a) First Solution: We will use
Solution Week 38 (6/2/03) Sum over 1 (a) First Solution: We will use

Homework 2
Homework 2

notebook05
notebook05

Differentiation with the TI-89
Differentiation with the TI-89

Simulation Techniques
Simulation Techniques

... Step 4 Select a block of random numbers, and count each digit 1 through 6 until the first 6 is obtained. For example, the block 857236 means that it takes 4 rolls to get a 6. ...
Pseudo-randomness, Hash Functions and Min-Hash
Pseudo-randomness, Hash Functions and Min-Hash

Introduction to Probability Distributions
Introduction to Probability Distributions

$doc.title

Probability and Expected Value PPT 1/20/16
Probability and Expected Value PPT 1/20/16

Probability and Statistics (part 2)
Probability and Statistics (part 2)

... Convergence of empirical mean to expected value The Central Limit Theorem The distribution of the sample average, µn , converges as n → ∞ to a normal distribution f (x) = √ ...
6th grade Math Knowledge Map
6th grade Math Knowledge Map

4.5.1 * Solving Absolute Value Inequalities
4.5.1 * Solving Absolute Value Inequalities

... |x| is asking for the distance a number x is from zero (left or right) ...
1112acc_vb2
1112acc_vb2

1. Introduction 2. The number of moves
1. Introduction 2. The number of moves

Expectation and Moment Generating Function
Expectation and Moment Generating Function

... continuous random variable followed by the various results and examples. Definition 2.1 Let be a continuous random variable with probability density function (p.d.f.) . If the integral ...
Random Variables
Random Variables

... Choose a customer at random at Subway ...
3.4A – Absolute Value Equations The absolute value function
3.4A – Absolute Value Equations The absolute value function

pptx version
pptx version

Lecture 17: The Law of Large Numbers and the Monte
Lecture 17: The Law of Large Numbers and the Monte

... encoded in the random variable X and that we repeat this experiment n times each time in the same conditions and each time independently of each other. We thus obtain n independent copies of the random variable X which we denote X1 , X2 , · · · , Xn Such a collection of random variable is called a I ...
< 1 ... 3 4 5 6 7 8 9 10 11 ... 16 >

Expected value



In probability theory, the expected value of a random variable is intuitively the long-run average value of repetitions of the experiment it represents. For example, the expected value of a dice roll is 3.5 because, roughly speaking, the average of an extremely large number of dice rolls is practically always nearly equal to 3.5. Less roughly, the law of large numbers guarantees that the arithmetic mean of the values almost surely converges to the expected value as the number of repetitions goes to infinity. The expected value is also known as the expectation, mathematical expectation, EV, mean, or first moment.More practically, the expected value of a discrete random variable is the probability-weighted average of all possible values. In other words, each possible value the random variable can assume is multiplied by its probability of occurring, and the resulting products are summed to produce the expected value. The same works for continuous random variables, except the sum is replaced by an integral and the probabilities by probability densities. The formal definition subsumes both of these and also works for distributions which are neither discrete nor continuous: the expected value of a random variable is the integral of the random variable with respect to its probability measure.The expected value does not exist for random variables having some distributions with large ""tails"", such as the Cauchy distribution. For random variables such as these, the long-tails of the distribution prevent the sum/integral from converging.The expected value is a key aspect of how one characterizes a probability distribution; it is one type of location parameter. By contrast, the variance is a measure of dispersion of the possible values of the random variable around the expected value. The variance itself is defined in terms of two expectations: it is the expected value of the squared deviation of the variable's value from the variable's expected value.The expected value plays important roles in a variety of contexts. In regression analysis, one desires a formula in terms of observed data that will give a ""good"" estimate of the parameter giving the effect of some explanatory variable upon a dependent variable. The formula will give different estimates using different samples of data, so the estimate it gives is itself a random variable. A formula is typically considered good in this context if it is an unbiased estimator—that is, if the expected value of the estimate (the average value it would give over an arbitrarily large number of separate samples) can be shown to equal the true value of the desired parameter.In decision theory, and in particular in choice under uncertainty, an agent is described as making an optimal choice in the context of incomplete information. For risk neutral agents, the choice involves using the expected values of uncertain quantities, while for risk averse agents it involves maximizing the expected value of some objective function such as a von Neumann-Morgenstern utility function. One example of using expected value in reaching optimal decisions is the Gordon-Loeb Model of information security investment. According to the model, one can conclude that the amount a firm spends to protect information should generally be only a small fraction of the expected loss (i.e., the expected value of the loss resulting from a cyber/information security breach).
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report