• Study Resource
  • Explore Categories
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Disciplina: SLC0673 Ciclos energéticos vitais
Disciplina: SLC0673 Ciclos energéticos vitais

... Rather than being reduced to lactate, ethanol, or some other fermentation product, the pyruvate produced by glycolysis is further oxidized to H2O and CO2. This aerobic phase of catabolism is called (cellular) respiration. In the broader physiological or macroscopic sense, respiration refers to a mul ...
Nov_16
Nov_16

AP Biology - ReicheltScience.com
AP Biology - ReicheltScience.com

... Cofactors ...
The Citric Acid Cycle
The Citric Acid Cycle

... Acetyl-CoA + 3NAD+ + FAD + GDP + Pi + 2 H2O 2CO2 +3NADH + FADH2 + GTP + CoA + 3H+ • Carbons of acetyl groups in acetyl-CoA are oxidized to CO2 • Electrons from this process reduce NAD+ and FAD • One GTP is formed per cycle, this can be converted to ATP • Intermediates in the cycle are not depleted ...
TCA: Tricarboxylic Acid cycle
TCA: Tricarboxylic Acid cycle

... ...
Cell respiration review
Cell respiration review

... For one glucose, how many turns of the Citric Acid Cycle are taken? ...
CHE 4310 Fall 2011
CHE 4310 Fall 2011

... 4. Glucose labeled with 14C in C-3 and C-4 is completely converted to acetyl-CoA via glycolysis and the pyruvate dehydrogenase complex. What percentage of the acetyl-CoA molecules formed will be labeled with 14C, and in which position of the acetyl moiety will the ...
CHE 4310 Fall 2011
CHE 4310 Fall 2011

... 4. Glucose labeled with 14C in C-3 and C-4 is completely converted to acetyl-CoA via glycolysis and the pyruvate dehydrogenase complex. What percentage of the acetyl-CoA molecules formed will be labeled with 14C, and in which position of the acetyl moiety will the ...
Cell Respiration--The Kreb`s Cycle
Cell Respiration--The Kreb`s Cycle

... Cycle, and accounts for about two thirds of the total oxidation of carbon compounds in most cells. ...
Document
Document

... take place in heart and skeletal muscle. ...
File
File

... because ATP is continuously being made at the same rate as it is being used up it is converted into Glucose-6phosphate (high energy) ...
Pre-Krebs and Krebs Cycle
Pre-Krebs and Krebs Cycle

... ...
The citric acid cycle (Krebs cycle, tricarboxylic acid cycle)
The citric acid cycle (Krebs cycle, tricarboxylic acid cycle)

... The citric acid cycle is a series of reactions in mitochondria that oxidize acetyl residues (as acetyl-CoA) and reduce coenzymes that upon reoxidation are linked to the formation of ATP. The citric acid cycle is the final common pathway for the aerobic oxidation of carbohydrate, lipid, and protein b ...
< 1 ... 479 480 481 482 483

Citric acid cycle



The citric acid cycle – also known as the tricarboxylic acid (TCA) cycle or the Krebs cycle – is a series of chemical reactions used by all aerobic organisms to generate energy through the oxidation of acetate derived from carbohydrates, fats and proteins into carbon dioxide and chemical energy in the form of adenosine triphosphate (ATP). In addition, the cycle provides precursors of certain amino acids as well as the reducing agent NADH that is used in numerous other biochemical reactions. Its central importance to many biochemical pathways suggests that it was one of the earliest established components of cellular metabolism and may have originated abiogenically.The name of this metabolic pathway is derived from citric acid (a type of tricarboxylic acid) that is consumed and then regenerated by this sequence of reactions to complete the cycle. In addition, the cycle consumes acetate (in the form of acetyl-CoA) and water, reduces NAD+ to NADH, and produces carbon dioxide as a waste byproduct. The NADH generated by the TCA cycle is fed into the oxidative phosphorylation (electron transport) pathway. The net result of these two closely linked pathways is the oxidation of nutrients to produce usable chemical energy in the form of ATP.In eukaryotic cells, the citric acid cycle occurs in the matrix of the mitochondrion. In prokaryotic cells, such as bacteria which lack mitochondria, the TCA reaction sequence is performed in the cytosol with the proton gradient for ATP production being across the cell's surface (plasma membrane) rather than the inner membrane of the mitochondrion.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report