
LOYOLA COLLEGE (AUTONOMOUS), CHENNAI M.Sc. THIRD
... dimensional square well potential of side ‘L’. What is the degeneracy ...
... dimensional square well potential of side ‘L’. What is the degeneracy ...
Quantum Computing at the Speed of Light
... Harnessing quantum states for information storage and manipulation (in so called “qubits”) is the objective of quantum computing, with the potential to revolutionize technology in areas of great importance to society (e.g. cryptography, data base searching, quantum simulation of advance materials, s ...
... Harnessing quantum states for information storage and manipulation (in so called “qubits”) is the objective of quantum computing, with the potential to revolutionize technology in areas of great importance to society (e.g. cryptography, data base searching, quantum simulation of advance materials, s ...
Physics 451 Quantum Mechanics
... Quantum mechanics Essential ideas 1) Uncertainty principle: Conjugates quantities of a particle (ex: position & momentum) can not be known simultaneously within a certain accuracy limit 2) Quantization: The measurement of a physical quantity in a confined system results in quanta (the measured value ...
... Quantum mechanics Essential ideas 1) Uncertainty principle: Conjugates quantities of a particle (ex: position & momentum) can not be known simultaneously within a certain accuracy limit 2) Quantization: The measurement of a physical quantity in a confined system results in quanta (the measured value ...
Lecture
... Spin quantum number “s” is a unique property of a particle. Fermions have half integer value of “s”. Two fermions cannot occupy the same quantum state. Electron, Proton, Neutron: s=1/2 Bosons have full integer value of “s”. There is no limitation in the number of bosons that can occupy the same stat ...
... Spin quantum number “s” is a unique property of a particle. Fermions have half integer value of “s”. Two fermions cannot occupy the same quantum state. Electron, Proton, Neutron: s=1/2 Bosons have full integer value of “s”. There is no limitation in the number of bosons that can occupy the same stat ...
PHYS 305 - Modern Physics (Spring 2016) Department of Physics
... Modern Physics is a undergraduate level course which is intended for students, who have already studied introductory level physics. This course provides a basic introduction to better understanding of special relativity, Quantum mechanics, and applications of quantum theory to: atomic and molecular ...
... Modern Physics is a undergraduate level course which is intended for students, who have already studied introductory level physics. This course provides a basic introduction to better understanding of special relativity, Quantum mechanics, and applications of quantum theory to: atomic and molecular ...
Chapter 1 Atoms Properties of Matter Intensive vs. Extensive
... Chapter 1 Atoms Properties of Matter o Intensive vs. Extensive, physical vs. chemical Chemical Change Physical Change Mixtures and Pure Substances Elements and Compounds o Group or Family o Period or Row o Metals o Nonmetals o Metalloids Chapter 2 Scientific Method SI Units of Measur ...
... Chapter 1 Atoms Properties of Matter o Intensive vs. Extensive, physical vs. chemical Chemical Change Physical Change Mixtures and Pure Substances Elements and Compounds o Group or Family o Period or Row o Metals o Nonmetals o Metalloids Chapter 2 Scientific Method SI Units of Measur ...
Syllabus
... Course objectives The main objective of this course is to examine the theoretical basis for our present understanding of the structure of matter at the atomic and molecular level. To that end we will review those aspects of quantum mechanics that play the most important role in this understanding. ...
... Course objectives The main objective of this course is to examine the theoretical basis for our present understanding of the structure of matter at the atomic and molecular level. To that end we will review those aspects of quantum mechanics that play the most important role in this understanding. ...
File
... This is one of the most interesting phenomena to arise from quantum mechanics; without it computer chips would not exist, and a 'personal' computer would probably take up an entire room. As stated above, a wave determines the probability of where a particle will be. When that probability wave encoun ...
... This is one of the most interesting phenomena to arise from quantum mechanics; without it computer chips would not exist, and a 'personal' computer would probably take up an entire room. As stated above, a wave determines the probability of where a particle will be. When that probability wave encoun ...