 
									
								
									Ch3 - Momentum and Conservation of Momentum
									
... When a car is out of control, it is better to hit a haystack than a concrete wall. Common sense, but with a physics reason: Same impulse occurs either way, but extension of hitting time reduces hitting force. ...
                        	... When a car is out of control, it is better to hit a haystack than a concrete wall. Common sense, but with a physics reason: Same impulse occurs either way, but extension of hitting time reduces hitting force. ...
									URL - StealthSkater
									
... This means that Subjective-Time evolution corresponds to the sequence of quantum jumps Ψi→ U Ψi → Ψf consisting of unitary process followed by state function process. Originally, U was thought to be the TGD counterpart of the unitary time evolution operator U(-t,t), t→ ∞ associated with the scatter ...
                        	... This means that Subjective-Time evolution corresponds to the sequence of quantum jumps Ψi→ U Ψi → Ψf consisting of unitary process followed by state function process. Originally, U was thought to be the TGD counterpart of the unitary time evolution operator U(-t,t), t→ ∞ associated with the scatter ...
									Phys. Rev. Lett. 108, 100501 - APS Link Manager
									
... many-body state has an energy which depends on the boundary conditions set by the state of the qubits. Intuitively, this dependence results from a compression of the crystal, and hence, a decrease in the distance between two Rydberg excitations aR when the boundary qubits are not excited. Under free ...
                        	... many-body state has an energy which depends on the boundary conditions set by the state of the qubits. Intuitively, this dependence results from a compression of the crystal, and hence, a decrease in the distance between two Rydberg excitations aR when the boundary qubits are not excited. Under free ...
									W. Pauli - Fisica Fundamental
									
... relativity correction (which is modified according to Landé to take into account the penetration of the optically active electron in the atom core). If we follow Sommerfeld to define the total angular momentum quantum number j of an atom in general as the maximum value of the quantum number m1 (usu ...
                        	... relativity correction (which is modified according to Landé to take into account the penetration of the optically active electron in the atom core). If we follow Sommerfeld to define the total angular momentum quantum number j of an atom in general as the maximum value of the quantum number m1 (usu ...
									Vacuum-Entanglement
									
... (II) Are Bells' inequalities violated? Yes, for arbitrary separation. (Filtration, “hidden” non-locality). (III) Where does it “come from”? Localization, shielding. (Harmonic Chain). ...
                        	... (II) Are Bells' inequalities violated? Yes, for arbitrary separation. (Filtration, “hidden” non-locality). (III) Where does it “come from”? Localization, shielding. (Harmonic Chain). ...
									PPT
									
... A heavy pulley, with radius R, starts at rest. We pull on an attached rope with constant force FT. It accelerates to final angular speed w in time t. A better estimate takes into account that there is friction in the system. This gives a torque (due to the axel) we’ll call this tfric. What is this b ...
                        	... A heavy pulley, with radius R, starts at rest. We pull on an attached rope with constant force FT. It accelerates to final angular speed w in time t. A better estimate takes into account that there is friction in the system. This gives a torque (due to the axel) we’ll call this tfric. What is this b ...
									Document
									
... Momentum is a vector… including direction. Hint: Draw your vectors tip to tail and draw the resultant momentum vector (p final). Resolve all vectors into x and y-components. Determine the sum of the x-components and the sum of the y-components and draw your final resultant vectors making a right tri ...
                        	... Momentum is a vector… including direction. Hint: Draw your vectors tip to tail and draw the resultant momentum vector (p final). Resolve all vectors into x and y-components. Determine the sum of the x-components and the sum of the y-components and draw your final resultant vectors making a right tri ...
									Document
									
... Which system of equations can be used to find the number x of sessions of tennis after which the total cost y with a season pass, including the cost of the pass, is the same as the total cost without a season pass? ...
                        	... Which system of equations can be used to find the number x of sessions of tennis after which the total cost y with a season pass, including the cost of the pass, is the same as the total cost without a season pass? ...
									Low-energy fixed points of random Heisenberg models Y.-C. Lin R. Me´lin
									
... dimerization. At the quantum critical point, the ground state can be described by the notion of a random singlet 共RS兲 phase, which consists of effective singlets of pairs of spins that are arbitrarily far from each other. Fisher’s SDRG treatment has been extended to the dimerized phases that turned ...
                        	... dimerization. At the quantum critical point, the ground state can be described by the notion of a random singlet 共RS兲 phase, which consists of effective singlets of pairs of spins that are arbitrarily far from each other. Fisher’s SDRG treatment has been extended to the dimerized phases that turned ...
									Magnetic ordering of nuclear spins in an interacting two-dimensional electron... Pascal Simon, Bernd Braunecker, and Daniel Loss
									
... nuclear spins at finite temperature.20 Furthermore, we showed that the temperature scale at which this ordering takes place is enhanced by e-e interactions.20 The study of thermodynamic quantities in interacting electron liquids 共especially in two dimensions兲 has attracted some theoretical25–34 and ...
                        	... nuclear spins at finite temperature.20 Furthermore, we showed that the temperature scale at which this ordering takes place is enhanced by e-e interactions.20 The study of thermodynamic quantities in interacting electron liquids 共especially in two dimensions兲 has attracted some theoretical25–34 and ...
									2.1 Coordinates - The Center for High Energy Physics
									
... We want a large Rs t so that required power for a given acceleration voltage is small. Power per unit distance Ploss /L= (V/L)2 / (Rs /L) Rs /L ~ w  It is advantageous to employ higher frequency rf such as x-band (w=11.4 GHz). The drawback is that the structure becomes small and wakefield effect b ...
                        	... We want a large Rs t so that required power for a given acceleration voltage is small. Power per unit distance Ploss /L= (V/L)2 / (Rs /L) Rs /L ~ w  It is advantageous to employ higher frequency rf such as x-band (w=11.4 GHz). The drawback is that the structure becomes small and wakefield effect b ...
									Hubbard model description of silicon spin qubits: charge stability
									
... In addition to the assumptions above, we further assume that the Si conduction band valley splitting is sufficiently large at the interface so that the valley degree of freedom can be disregarded. The neglecting of the valley splitting because of interface effects is the standard approximation in es ...
                        	... In addition to the assumptions above, we further assume that the Si conduction band valley splitting is sufficiently large at the interface so that the valley degree of freedom can be disregarded. The neglecting of the valley splitting because of interface effects is the standard approximation in es ...
									Superluminal Quantum Models of the Photon and Electron
									
... In 1925, Werner Heisenberg introduced matrix mechanics to describe what is observable about radiation from atoms – light frequencies and intensities. In 1926, Erwin Schrodinger in introduced wave mechanics to predict the observed energy levels of atoms based on electron wave properties. The two theo ...
                        	... In 1925, Werner Heisenberg introduced matrix mechanics to describe what is observable about radiation from atoms – light frequencies and intensities. In 1926, Erwin Schrodinger in introduced wave mechanics to predict the observed energy levels of atoms based on electron wave properties. The two theo ...
									- Philsci-Archive
									
... distinctions in nature, and because we can easily imagine a scientist creating a new theory which is more informative than its alternatives but whose theoretical terms are not definable in terms of the old theory and therefore do not stand for natural classes. Of course, the persuasiveness of the o ...
                        	... distinctions in nature, and because we can easily imagine a scientist creating a new theory which is more informative than its alternatives but whose theoretical terms are not definable in terms of the old theory and therefore do not stand for natural classes. Of course, the persuasiveness of the o ...
Renormalization group
 
                        In theoretical physics, the renormalization group (RG) refers to a mathematical apparatus that allows systematic investigation of the changes of a physical system as viewed at different distance scales. In particle physics, it reflects the changes in the underlying force laws (codified in a quantum field theory) as the energy scale at which physical processes occur varies, energy/momentum and resolution distance scales being effectively conjugate under the uncertainty principle (cf. Compton wavelength).A change in scale is called a ""scale transformation"". The renormalization group is intimately related to ""scale invariance"" and ""conformal invariance"", symmetries in which a system appears the same at all scales (so-called self-similarity). (However, note that scale transformations are included in conformal transformations, in general: the latter including additional symmetry generators associated with special conformal transformations.)As the scale varies, it is as if one is changing the magnifying power of a notional microscope viewing the system. In so-called renormalizable theories, the system at one scale will generally be seen to consist of self-similar copies of itself when viewed at a smaller scale, with different parameters describing the components of the system. The components, or fundamental variables, may relate to atoms, elementary particles, atomic spins, etc. The parameters of the theory typically describe the interactions of the components. These may be variable ""couplings"" which measure the strength of various forces, or mass parameters themselves. The components themselves may appear to be composed of more of the self-same components as one goes to shorter distances.For example, in quantum electrodynamics (QED), an electron appears to be composed of electrons, positrons (anti-electrons) and photons, as one views it at higher resolution, at very short distances. The electron at such short distances has a slightly different electric charge than does the ""dressed electron"" seen at large distances, and this change, or ""running,"" in the value of the electric charge is determined by the renormalization group equation.
 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									