• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
2008 to 2012 - NLCS Maths Department
2008 to 2012 - NLCS Maths Department

Copyright © by Holt, Rinehart and Winston
Copyright © by Holt, Rinehart and Winston

... Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor. ...
7.2 Isosceles and Equilateral Triangles
7.2 Isosceles and Equilateral Triangles

3.2 Practice A - Peoria Public Schools
3.2 Practice A - Peoria Public Schools

Introduction to Euclid Geometry IX NCERT SOLUTION
Introduction to Euclid Geometry IX NCERT SOLUTION

1.What Is The Solution Set For In The Interval A
1.What Is The Solution Set For In The Interval A

Math 2201 Unit 3: Acute Triangle Trigonometry Read Learning
Math 2201 Unit 3: Acute Triangle Trigonometry Read Learning

... the sine of the opposite angles. p. 131 3. Derive the Law of Sines (Sine Law). p. 130 This chapter is about solving acute triangles. This means finding the lengths of the missing sides and/or the measures of the missing angles. We will examine two ways to solve acute triangles – the Law of Sines (Si ...
2015-2016 Mrs. Smart 11/05/2015 - 12/01/2015 Class View Page 1
2015-2016 Mrs. Smart 11/05/2015 - 12/01/2015 Class View Page 1

Mathematics Pacing Resource Document
Mathematics Pacing Resource Document

Chapter 7
Chapter 7

Geometry A - Arkansas Department of Education
Geometry A - Arkansas Department of Education

Chapter 10
Chapter 10

ch9 pkt - Niskayuna Central Schools
ch9 pkt - Niskayuna Central Schools

Right Triangle Trigonometry
Right Triangle Trigonometry

Circle geometry
Circle geometry

Exploring Parallel Lines
Exploring Parallel Lines

INTEGRATION TECHNIQUES Math 101 Contents 1. Substitution
INTEGRATION TECHNIQUES Math 101 Contents 1. Substitution

Chapter 3.angles
Chapter 3.angles

Polygons - Lesson Corner
Polygons - Lesson Corner

Trigonometry i
Trigonometry i

precalc
precalc

SAS
SAS

Non-Euclidean Geometry
Non-Euclidean Geometry

Geometry Unit 2 Formative Items Part 1
Geometry Unit 2 Formative Items Part 1

Measuring the Height of the Flagpole: A Parallax Model
Measuring the Height of the Flagpole: A Parallax Model

< 1 ... 249 250 251 252 253 254 255 256 257 ... 807 >

Trigonometric functions



In mathematics, the trigonometric functions (also called the circular functions) are functions of an angle. They relate the angles of a triangle to the lengths of its sides. Trigonometric functions are important in the study of triangles and modeling periodic phenomena, among many other applications.The most familiar trigonometric functions are the sine, cosine, and tangent. In the context of the standard unit circle (a circle with radius 1 unit), where a triangle is formed by a ray originating at the origin and making some angle with the x-axis, the sine of the angle gives the length of the y-component (the opposite to the angle or the rise) of the triangle, the cosine gives the length of the x-component (the adjacent of the angle or the run), and the tangent function gives the slope (y-component divided by the x-component). More precise definitions are detailed below. Trigonometric functions are commonly defined as ratios of two sides of a right triangle containing the angle, and can equivalently be defined as the lengths of various line segments from a unit circle. More modern definitions express them as infinite series or as solutions of certain differential equations, allowing their extension to arbitrary positive and negative values and even to complex numbers.Trigonometric functions have a wide range of uses including computing unknown lengths and angles in triangles (often right triangles). In this use, trigonometric functions are used, for instance, in navigation, engineering, and physics. A common use in elementary physics is resolving a vector into Cartesian coordinates. The sine and cosine functions are also commonly used to model periodic function phenomena such as sound and light waves, the position and velocity of harmonic oscillators, sunlight intensity and day length, and average temperature variations through the year.In modern usage, there are six basic trigonometric functions, tabulated here with equations that relate them to one another. Especially with the last four, these relations are often taken as the definitions of those functions, but one can define them equally well geometrically, or by other means, and then derive these relations.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report