• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Curriculum Map - Weld RE
Curriculum Map - Weld RE

chapter 4 test_regular
chapter 4 test_regular

8th Grade LA:
8th Grade LA:

... Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. For example, arrange three copies of the same triangle so that the sum of t ...
Geometry Sections 6.4 and 6.5
Geometry Sections 6.4 and 6.5

... Geometry Sections 6.4 and 6.5 Prove Triangles Similar by AA Prove Triangles Similar by SSS and SAS ...
Mathematics Department - University High School
Mathematics Department - University High School

Condensed Test
Condensed Test

Geometry - Hamilton School District
Geometry - Hamilton School District

Geometry Quiz Ch 3 section 1 - 4 Name Block_____ Name a pair of
Geometry Quiz Ch 3 section 1 - 4 Name Block_____ Name a pair of

PracTest312
PracTest312

Puzzle: Cross
Puzzle: Cross

Updates March 31 2016 Xiaqing	Li
Updates March 31 2016 Xiaqing Li

... Updates March 31 2016 Xiaqing Li ...
Rose-Venus Yousif Intro to 21st Tech. Week 3 Objective: Show and
Rose-Venus Yousif Intro to 21st Tech. Week 3 Objective: Show and

lesson 1.5
lesson 1.5

Tools for Proofs
Tools for Proofs

Practice 4-6
Practice 4-6

Right Triangle Practice
Right Triangle Practice

Chapter 1 Review Sheet
Chapter 1 Review Sheet

12. Parallels Given one rail of a railroad track, is there always a
12. Parallels Given one rail of a railroad track, is there always a

... Euclid’s Fifth Postulate: In a transveral configuration, if the sum of the measure of the two interior angles on the same side of the transveral t is less than 180, then the lines ℓ and m will eventually intersect on this particular side of t. This axiom seems self evident. Suppose m∠2 + m∠6 < 180. ...
Name:
Name:

Guided Notes - Segment and Angle Addition
Guided Notes - Segment and Angle Addition

Unit 2 Study Guide
Unit 2 Study Guide

... -- Any theorems, postulates, definitions, and properties that appear in Chapter Two and any material that we worked on in Chapter One are fair game for the test. --I would recommend making flash cards for any vocabulary or rules with which you are still having trouble. --A majority of the proofs on ...
Chapter 4: Euclidean Geometry Philip of Macedonia 382
Chapter 4: Euclidean Geometry Philip of Macedonia 382

Geometry 5-5 Triangle Inequalities
Geometry 5-5 Triangle Inequalities

Geometry
Geometry

Geometry Vocabulary Test
Geometry Vocabulary Test

< 1 ... 710 711 712 713 714 715 716 717 718 ... 732 >

Euclidean geometry



Euclidean geometry is a mathematical system attributed to the Alexandrian Greek mathematician Euclid, which he described in his textbook on geometry: the Elements. Euclid's method consists in assuming a small set of intuitively appealing axioms, and deducing many other propositions (theorems) from these. Although many of Euclid's results had been stated by earlier mathematicians, Euclid was the first to show how these propositions could fit into a comprehensive deductive and logical system. The Elements begins with plane geometry, still taught in secondary school as the first axiomatic system and the first examples of formal proof. It goes on to the solid geometry of three dimensions. Much of the Elements states results of what are now called algebra and number theory, explained in geometrical language.For more than two thousand years, the adjective ""Euclidean"" was unnecessary because no other sort of geometry had been conceived. Euclid's axioms seemed so intuitively obvious (with the possible exception of the parallel postulate) that any theorem proved from them was deemed true in an absolute, often metaphysical, sense. Today, however, many other self-consistent non-Euclidean geometries are known, the first ones having been discovered in the early 19th century. An implication of Albert Einstein's theory of general relativity is that physical space itself is not Euclidean, and Euclidean space is a good approximation for it only where the gravitational field is weak.Euclidean geometry is an example of synthetic geometry, in that it proceeds logically from axioms to propositions without the use of coordinates. This is in contrast to analytic geometry, which uses coordinates.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report