
Concept # 1: 30-60-90 Right angled triangle: 1. First, see that after
... (2) INSUFFICIENT: This tells us that C is the midpoint of segment BD. This does not help us find the length of BD. (1) AND (2) SUFFICIENT: Using statements 1 and 2, we know that AC is the perpendicular bisector of BD. This means that triangle BAD is an isosceles triangle so side AB must have a lengt ...
... (2) INSUFFICIENT: This tells us that C is the midpoint of segment BD. This does not help us find the length of BD. (1) AND (2) SUFFICIENT: Using statements 1 and 2, we know that AC is the perpendicular bisector of BD. This means that triangle BAD is an isosceles triangle so side AB must have a lengt ...
Dissection of the Dodecahedron
... Except as otherwise expressly permitted under copyright law, no copying, redistribution, retransmission, publication or commercial exploitation of this material will be permitted without the express permission of the copyright owner. In the event of any permitted copying, redistribution or publicati ...
... Except as otherwise expressly permitted under copyright law, no copying, redistribution, retransmission, publication or commercial exploitation of this material will be permitted without the express permission of the copyright owner. In the event of any permitted copying, redistribution or publicati ...
0116geo
... 31 Line is mapped onto line m by a dilation centered at the origin with a scale factor of 2. The equation of line is 3x − y = 4. Determine and state an equation for line m. 32 The aspect ratio (the ratio of screen width to height) of a rectangular flat-screen television is 16:9. The length of th ...
... 31 Line is mapped onto line m by a dilation centered at the origin with a scale factor of 2. The equation of line is 3x − y = 4. Determine and state an equation for line m. 32 The aspect ratio (the ratio of screen width to height) of a rectangular flat-screen television is 16:9. The length of th ...
Euclidean geometry

Euclidean geometry is a mathematical system attributed to the Alexandrian Greek mathematician Euclid, which he described in his textbook on geometry: the Elements. Euclid's method consists in assuming a small set of intuitively appealing axioms, and deducing many other propositions (theorems) from these. Although many of Euclid's results had been stated by earlier mathematicians, Euclid was the first to show how these propositions could fit into a comprehensive deductive and logical system. The Elements begins with plane geometry, still taught in secondary school as the first axiomatic system and the first examples of formal proof. It goes on to the solid geometry of three dimensions. Much of the Elements states results of what are now called algebra and number theory, explained in geometrical language.For more than two thousand years, the adjective ""Euclidean"" was unnecessary because no other sort of geometry had been conceived. Euclid's axioms seemed so intuitively obvious (with the possible exception of the parallel postulate) that any theorem proved from them was deemed true in an absolute, often metaphysical, sense. Today, however, many other self-consistent non-Euclidean geometries are known, the first ones having been discovered in the early 19th century. An implication of Albert Einstein's theory of general relativity is that physical space itself is not Euclidean, and Euclidean space is a good approximation for it only where the gravitational field is weak.Euclidean geometry is an example of synthetic geometry, in that it proceeds logically from axioms to propositions without the use of coordinates. This is in contrast to analytic geometry, which uses coordinates.