
Constructing Perpendicular Bisectors
... Paper-Folding a Perpendicular Bisector STEP 1 Draw a segment on patty paper. Label it OE. STEP 2 Fold your patty paper so that the endpoints O and E overlap with one another. Draw a line along the fold. STEP 3 Name the point of intersection N. Next, measure a. the four angles which are formed, and ...
... Paper-Folding a Perpendicular Bisector STEP 1 Draw a segment on patty paper. Label it OE. STEP 2 Fold your patty paper so that the endpoints O and E overlap with one another. Draw a line along the fold. STEP 3 Name the point of intersection N. Next, measure a. the four angles which are formed, and ...
g Parts of ures Are
... Have students work in pairs. Provide each student with a protractor and ruler, and ask them to explain why two figures are congruent or noncongruent. Provide students with sentence stems to help them describe the attributes of the figures. For example: “The two (triangles/quadrilaterals/figures) are ...
... Have students work in pairs. Provide each student with a protractor and ruler, and ask them to explain why two figures are congruent or noncongruent. Provide students with sentence stems to help them describe the attributes of the figures. For example: “The two (triangles/quadrilaterals/figures) are ...
A Method For Establishing Certain Trigonometric Inequalities
... This note is motivated by the desire to find a straightforward proof of the fact that among all equifacial tetrahedra, the regular one has the maximal solid angle sum [9]. This led to a similar desire to find a systematic method for optimizing certain trigonometric functions and for establishing cer ...
... This note is motivated by the desire to find a straightforward proof of the fact that among all equifacial tetrahedra, the regular one has the maximal solid angle sum [9]. This led to a similar desire to find a systematic method for optimizing certain trigonometric functions and for establishing cer ...
MA32* Honors*Geometry* Arizona’s*College*and*Career*Ready* Standards
... The*concepts*of*congruence,*similarity,*and*symmetry*can*be*understood*from*the*perspective*of*geometric*transformation.*Fundamental*are*the*rigid*motions:*translations,*rotations,*reflections,* and*combinations*of*these,*all*of*which*are*here*assumed*to*preserve*distance*and*angles*(and*therefore*s ...
... The*concepts*of*congruence,*similarity,*and*symmetry*can*be*understood*from*the*perspective*of*geometric*transformation.*Fundamental*are*the*rigid*motions:*translations,*rotations,*reflections,* and*combinations*of*these,*all*of*which*are*here*assumed*to*preserve*distance*and*angles*(and*therefore*s ...
Euclidean geometry

Euclidean geometry is a mathematical system attributed to the Alexandrian Greek mathematician Euclid, which he described in his textbook on geometry: the Elements. Euclid's method consists in assuming a small set of intuitively appealing axioms, and deducing many other propositions (theorems) from these. Although many of Euclid's results had been stated by earlier mathematicians, Euclid was the first to show how these propositions could fit into a comprehensive deductive and logical system. The Elements begins with plane geometry, still taught in secondary school as the first axiomatic system and the first examples of formal proof. It goes on to the solid geometry of three dimensions. Much of the Elements states results of what are now called algebra and number theory, explained in geometrical language.For more than two thousand years, the adjective ""Euclidean"" was unnecessary because no other sort of geometry had been conceived. Euclid's axioms seemed so intuitively obvious (with the possible exception of the parallel postulate) that any theorem proved from them was deemed true in an absolute, often metaphysical, sense. Today, however, many other self-consistent non-Euclidean geometries are known, the first ones having been discovered in the early 19th century. An implication of Albert Einstein's theory of general relativity is that physical space itself is not Euclidean, and Euclidean space is a good approximation for it only where the gravitational field is weak.Euclidean geometry is an example of synthetic geometry, in that it proceeds logically from axioms to propositions without the use of coordinates. This is in contrast to analytic geometry, which uses coordinates.