Physics 2102 Lecture 15
... "Rail guns are hyper-velocity weapons that shoot aluminum or clay rounds at just below the speed of light. In our film, we've taken existing stealth technology one step further and given them an X-ray scope sighting system," notes director Russell. "These guns represent a whole new technology in wea ...
... "Rail guns are hyper-velocity weapons that shoot aluminum or clay rounds at just below the speed of light. In our film, we've taken existing stealth technology one step further and given them an X-ray scope sighting system," notes director Russell. "These guns represent a whole new technology in wea ...
Homework 5.3.
... Homework 5.3. 1. a. A direct current I flows in a straight wire of length 2L situated along the z-axis (stretching from –L to L). Find the magnetic vector potential in a field point P that is situated in the bisecting plane (see figure below). (Hint: explore the theory on pages 243-245 and look for ...
... Homework 5.3. 1. a. A direct current I flows in a straight wire of length 2L situated along the z-axis (stretching from –L to L). Find the magnetic vector potential in a field point P that is situated in the bisecting plane (see figure below). (Hint: explore the theory on pages 243-245 and look for ...
Magnetostatics – An Infinite Line current
... Magnetostatics – A Ring of Current Example 3.3: Let us now consider a ring of current with radius a lying in the x-y plane with a current I in the +az direction. The objective is to find an expression for the field at an arbitrary point a height h on the z-axis. The Biot-Savart Law ...
... Magnetostatics – A Ring of Current Example 3.3: Let us now consider a ring of current with radius a lying in the x-y plane with a current I in the +az direction. The objective is to find an expression for the field at an arbitrary point a height h on the z-axis. The Biot-Savart Law ...
Magnetostatics – Bar Magnet Magnetostatics – Oersted`s Experiment
... Magnetostatics – Bar Magnet Iron filings "map" of a bar magnet’s field As far back as 4500 years ago, the Chinese discovered that certain types of iron ore could attract each other and certain metals. Carefully suspended slivers of this metal were found to always point in the same direction, and as ...
... Magnetostatics – Bar Magnet Iron filings "map" of a bar magnet’s field As far back as 4500 years ago, the Chinese discovered that certain types of iron ore could attract each other and certain metals. Carefully suspended slivers of this metal were found to always point in the same direction, and as ...
Chapter 9 The Nature of Electromagnetic Waves Electromagnetic Radiation
... Microwave & Infrared EMR • Microwave: used in microwave ovens & cellular phones • Infrared: Fast Food Heat Lamps, use as a night time surveillance ...
... Microwave & Infrared EMR • Microwave: used in microwave ovens & cellular phones • Infrared: Fast Food Heat Lamps, use as a night time surveillance ...
The magnetic forces on the two sides parallel to the x axis balance
... Find an expression for the electrical resistance of a thin conducting sheet, consisting of a material of resistivity ρ, having a trapezoidal shape (see figure) with height H, thickness t, minor basis B2 and larger basis B1. Show that if B1-B2<
... Find an expression for the electrical resistance of a thin conducting sheet, consisting of a material of resistivity ρ, having a trapezoidal shape (see figure) with height H, thickness t, minor basis B2 and larger basis B1. Show that if B1-B2<
Magnetic Field
... Electrons and protons have electrical forces between them because they have _____________. What is the charge on an electron? ________________________. What is the charge on a proton? _______________________. The flow of charges around a circuit is called _________________ and is measured in Amps. I ...
... Electrons and protons have electrical forces between them because they have _____________. What is the charge on an electron? ________________________. What is the charge on a proton? _______________________. The flow of charges around a circuit is called _________________ and is measured in Amps. I ...
Exercise 5 Solution
... At O, the velocity is zero, so there is no cutting of magnetic field lines, hence no emf is induced. When the bar swings down, PE is changed into KE, so the speed is increasing, hence the cutting of magnetic field lines is increasing, so induced emf is increased. When the bar swings down after reach ...
... At O, the velocity is zero, so there is no cutting of magnetic field lines, hence no emf is induced. When the bar swings down, PE is changed into KE, so the speed is increasing, hence the cutting of magnetic field lines is increasing, so induced emf is increased. When the bar swings down after reach ...
Electromagnet
An electromagnet is a type of magnet in which the magnetic field is produced by an electric current. The magnetic field disappears when the current is turned off. Electromagnets usually consist of a large number of closely spaced turns of wire that create the magnetic field. The wire turns are often wound around a magnetic core made from a ferromagnetic or ferrimagnetic material such as iron; the magnetic core concentrates the magnetic flux and makes a more powerful magnet.The main advantage of an electromagnet over a permanent magnet is that the magnetic field can be quickly changed by controlling the amount of electric current in the winding. However, unlike a permanent magnet that needs no power, an electromagnet requires a continuous supply of current to maintain the magnetic field.Electromagnets are widely used as components of other electrical devices, such as motors, generators, relays, loudspeakers, hard disks, MRI machines, scientific instruments, and magnetic separation equipment. Electromagnets are also employed in industry for picking up and moving heavy iron objects such as scrap iron and steel.