
Electrical & Electronic Principles
... • Only powers of ten (I, X, C, M) can be repeated. • Do not repeat any letter more than three times in a row. • Because of the preceding rule, certain numbers must be written using subtraction. In this case, a letter with a smaller value precedes one with a larger value and the value of the smaller ...
... • Only powers of ten (I, X, C, M) can be repeated. • Do not repeat any letter more than three times in a row. • Because of the preceding rule, certain numbers must be written using subtraction. In this case, a letter with a smaller value precedes one with a larger value and the value of the smaller ...
Tutorial Problems for PY2T10 (2013/14)
... 4). A slab of dielectric of relative permittivity ε is placed in a uniform external field E whose field lines make an angle θ with a normal to the surface of the slab. What is the density of polarisation charge on the surface of the slab? Hint: Consider the total field inside the slab, which is the ...
... 4). A slab of dielectric of relative permittivity ε is placed in a uniform external field E whose field lines make an angle θ with a normal to the surface of the slab. What is the density of polarisation charge on the surface of the slab? Hint: Consider the total field inside the slab, which is the ...
Magnetism Study Guide
... Domains of electrons are all lined up in the same direction and move at same speed. ...
... Domains of electrons are all lined up in the same direction and move at same speed. ...
David`s Project - The-Bobcat
... magnet differently depending on what it is doing. The magnetic field attracts any type of metal or steel objects near it. ...
... magnet differently depending on what it is doing. The magnetic field attracts any type of metal or steel objects near it. ...
4.2.2 Paramagnetism
... The treatment of paramagnetism in the most simple way is exactly identical to the treatment of orientation polarization. All you have to do is to replace the electric dipoles by magnetic dipoles, which we call magnetic moments. We have permanent dipole moments in the material, they have no or neglig ...
... The treatment of paramagnetism in the most simple way is exactly identical to the treatment of orientation polarization. All you have to do is to replace the electric dipoles by magnetic dipoles, which we call magnetic moments. We have permanent dipole moments in the material, they have no or neglig ...
4.2.2 Paramagnetism
... The treatment of paramagnetism in the most simple way is exactly identical to the treatment of orientation polarization. All you have to do is to replace the electric dipoles by magnetic dipoles, which we call magnetic moments. We have permanent dipole moments in the material, they have no or neglig ...
... The treatment of paramagnetism in the most simple way is exactly identical to the treatment of orientation polarization. All you have to do is to replace the electric dipoles by magnetic dipoles, which we call magnetic moments. We have permanent dipole moments in the material, they have no or neglig ...
Magnetometer

Magnetometers are measurement instruments used for two general purposes: to measure the magnetization of a magnetic material like a ferromagnet, or to measure the strength and, in some cases, the direction of the magnetic field at a point in space.The first magnetometer was invented by Carl Friedrich Gauss in 1833 and notable developments in the 19th century included the Hall Effect which is still widely used.Magnetometers are widely used for measuring the Earth's magnetic field and in geophysical surveys to detect magnetic anomalies of various types. They are also used militarily to detect submarines. Consequently, some countries, such as the USA, Canada and Australia classify the more sensitive magnetometers as military technology, and control their distribution.Magnetometers can be used as metal detectors: they can detect only magnetic (ferrous) metals, but can detect such metals at a much larger depth than conventional metal detectors; they are capable of detecting large objects, such as cars, at tens of metres, while a metal detector's range is rarely more than 2 metres.In recent years magnetometers have been miniaturized to the extent that they can be incorporated in integrated circuits at very low cost and are finding increasing use as compasses in consumer devices such as mobile phones and tablet computers.