• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Overview for Confidence Intervals and Hypothesis
Overview for Confidence Intervals and Hypothesis

Introduction to hypothesis testing
Introduction to hypothesis testing

Chapter 10 Analysis of Variance (Hypothesis Testing III)
Chapter 10 Analysis of Variance (Hypothesis Testing III)

Non-Parametric Statisitics William Simpson 25th April 2014
Non-Parametric Statisitics William Simpson 25th April 2014

STATISTICAL DATA ANALYSIS TECHNIQUES
STATISTICAL DATA ANALYSIS TECHNIQUES

Hypothesis Testing Methods to test
Hypothesis Testing Methods to test

H - Gordon State College
H - Gordon State College

... If, under a given assumption, the probability of a particular observed event is exceptionally small, we conclude that the assumption is ...
Simple Tests of Hypotheses for the Non
Simple Tests of Hypotheses for the Non

F13_lect8_ch14svFINAL
F13_lect8_ch14svFINAL

and 1
and 1

T_test
T_test

This file has the solutions as produced by computer
This file has the solutions as produced by computer

Section 9.3 (4th edition) Significance tests for Population Means
Section 9.3 (4th edition) Significance tests for Population Means

Simple Tests of Hypotheses for the Non-statistician: What They Are and Why They Can Go Bad
Simple Tests of Hypotheses for the Non-statistician: What They Are and Why They Can Go Bad

No Slide Title
No Slide Title

Notes 21
Notes 21

day5-E2005
day5-E2005

Significance
Significance

Document
Document

Chapter 9 Review
Chapter 9 Review

HANDY REFERENCE SHEET – HRP 259
HANDY REFERENCE SHEET – HRP 259

Hypothesis Testing
Hypothesis Testing

Paired t-test, non
Paired t-test, non

One Way ANOVA
One Way ANOVA

STATISTICS - SUMMARY - Michigan State University
STATISTICS - SUMMARY - Michigan State University

< 1 ... 21 22 23 24 25 26 27 28 29 ... 41 >

Omnibus test

Omnibus tests are a kind of statistical test. They test whether the explained variance in a set of data is significantly greater than the unexplained variance, overall. One example is the F-test in the analysis of variance. There can be legitimate significant effects within a model even if the omnibus test is not significant. For instance, in a model with two independent variables, if only one variable exerts a significant effect on the dependent variable and the other does not, then the omnibus test may be non-significant. This fact does not affect the conclusions that may be drawn from the one significant variable. In order to test effects within an omnibus test, researchers often use contrasts.In addition, Omnibus test is a general name refers to an overall or a global test and in most cases omnibus test is called in other expressions such as: F-test or Chi-squared test.Omnibus test as a statistical test is implemented on an overall hypothesis that tends to find general significance between parameters' variance, while examining parameters of the same type, such as:Hypotheses regarding equality vs. inequality between k expectancies µ1=µ2=…=µk vs. at least one pair µj≠µj' , where j,j'=1,...,k and j≠j', in Analysis Of Variance(ANOVA); or regarding equality between k standard deviations σ1= σ2=….= σ k vs. at least one pair σj≠ σj' in testing equality of variances in ANOVA; or regarding coefficients β1= β2=….= βk vs. at least one pair βj≠βj' in Multiple linear regression or in Logistic regression.Usually, it tests more than two parameters of the same type and its role is to find general significance of at least one of the parameters involved.Omnibus tests commonly refers to either one of those statistical tests: ANOVA F test to test significance between all factor means and/or between their variances equality in Analysis of Variance procedure ; The omnibus multivariate F Test in ANOVA with repeated measures ; F test for equality/inequality of the regression coefficients in Multiple Regression; Chi-Square test for exploring significance differences between blocks of independent explanatory variables or their coefficients in a logistic regression.Those omnibus tests are usually conducted whenever one tends to test an overall hypothesis on a quadratic statistic (like sum of squares or variance or covariance) or rational quadratic statistic (like the ANOVA overall F test in Analysis of Variance or F Test in Analysis of covariance or the F Test in Linear Regression, or Chi-Square in Logistic Regression).While significance is founded on the omnibus test, it doesn't specify exactly where the difference is occurred, meaning, it doesn't bring specification on which parameter is significally different from the other, but it statistically determine that there is a difference, so at least two of the tested parameters are statistically different. If significance was met, none of those tests will tell specifically which mean differs from the others (in ANOVA), which coefficient differs from the others (in Regression) etc.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report