
VIBRATIONAL SPECTROSCOPIC INVESTIGATIONS ON
... other hand, the side effects that can arise during captopril and propranolol treatment may well be caused by the interaction with other metal ions present in the plasma. In biological media, the thiol groups of cysteine residues are known to be among the main binding sites for captopril compounds. C ...
... other hand, the side effects that can arise during captopril and propranolol treatment may well be caused by the interaction with other metal ions present in the plasma. In biological media, the thiol groups of cysteine residues are known to be among the main binding sites for captopril compounds. C ...
MO tutorials
... (LUMO). This has π symmetry i.e. has one nodal plane passing through the internuclear axis. To show the symmetry of the HOMO and LUMO you need to draw them and a really good answer will show the completed molecular orbital energy level diagram for CO, to prove these are the fully occupied and empty ...
... (LUMO). This has π symmetry i.e. has one nodal plane passing through the internuclear axis. To show the symmetry of the HOMO and LUMO you need to draw them and a really good answer will show the completed molecular orbital energy level diagram for CO, to prove these are the fully occupied and empty ...
coordination complexes
... The basic idea is that the ligand (Lewis base) is providing electron density to the metal (Lewis acid) The bond from ligand to metal is covalent (shared pair), but both electrons come from the ligand (coordinate covalent bond) In terms of MO theory we visualize the coordination as the transfer of e ...
... The basic idea is that the ligand (Lewis base) is providing electron density to the metal (Lewis acid) The bond from ligand to metal is covalent (shared pair), but both electrons come from the ligand (coordinate covalent bond) In terms of MO theory we visualize the coordination as the transfer of e ...
Electronic and chemical interactions between boron and carbon
... steric) vs long-range (or electronic) effects. “Additive” atoms that are pure site blockers exert only a short-range local effect in which adsorption sites that are within - 1 bond length of the surface impurity are poisoned.6*7 In the other extreme are “additive” atoms that induce electronic pertur ...
... steric) vs long-range (or electronic) effects. “Additive” atoms that are pure site blockers exert only a short-range local effect in which adsorption sites that are within - 1 bond length of the surface impurity are poisoned.6*7 In the other extreme are “additive” atoms that induce electronic pertur ...
Non-native transition metal monoxide nanostructures
... preparation, investigation of their surface structures and physicochemical properties, and useful applications.6 In particular, transition metal monoxides are ideal models for the direct verification of the relationship between antiferromagnetic arrangement of atomic spins and crystal distortions.8 C ...
... preparation, investigation of their surface structures and physicochemical properties, and useful applications.6 In particular, transition metal monoxides are ideal models for the direct verification of the relationship between antiferromagnetic arrangement of atomic spins and crystal distortions.8 C ...
Introduction to nomenclature of coordination compounds
... number-prefix. In such cases the terms bis-, tris-, tetrakis-, pentakis- … are used. F Different ligands in the same coordination compound are given in strictly alphabetic order of the ligands (number-prefixes has no influence on that) G Bridging ligands (between two central atoms) is given the pref ...
... number-prefix. In such cases the terms bis-, tris-, tetrakis-, pentakis- … are used. F Different ligands in the same coordination compound are given in strictly alphabetic order of the ligands (number-prefixes has no influence on that) G Bridging ligands (between two central atoms) is given the pref ...
Metal aqua ions
... mining operations by grinding up the ore and then suspending it in a dilute solution of CN-, which dissolves the Au on bubbling air through the solution: 4 Au(s) + 8 CN-(aq) + O2(g) + 2 H2O = 4 [Au(CN)2]-(aq) + 4 OH- ...
... mining operations by grinding up the ore and then suspending it in a dilute solution of CN-, which dissolves the Au on bubbling air through the solution: 4 Au(s) + 8 CN-(aq) + O2(g) + 2 H2O = 4 [Au(CN)2]-(aq) + 4 OH- ...
Thermoanalytical characterization of carbon/carbon hybrid material
... mass loss, since evolution of CO2 and low molecular fragments (m/z = 55 and 78) was observed by mass spectroscopy [3]. At even higher temperatures, cross-linking may take place at the same time. In the earlier study [3] using MS for evolved gas analysis, the heating rate was high as 20◦ min−1 , and ...
... mass loss, since evolution of CO2 and low molecular fragments (m/z = 55 and 78) was observed by mass spectroscopy [3]. At even higher temperatures, cross-linking may take place at the same time. In the earlier study [3] using MS for evolved gas analysis, the heating rate was high as 20◦ min−1 , and ...
Spin crossover

Spin Crossover (SCO), sometimes referred to as spin transition or spin equilibrium behavior, is a phenomenon that occurs in some metal complexes wherein the spin state of the complex changes due to external stimuli such as a variation of temperature, pressure, light irradiation or an influence of a magnetic field.With regard to a ligand field and ligand field theory, the change in spin state is a transition from a low spin (LS) ground state electron configuration to a high spin (HS) ground state electron configuration of the metal’s d atomic orbitals (AOs), or vice versa. The magnitude of the ligand field splitting along with the pairing energy of the complex determines whether it will have a LS or HS electron configuration. A LS state occurs because the ligand field splitting (Δ) is greater than the pairing energy of the complex (which is an unfavorable process).Figure 1 is a simplified illustration of the metal’s d orbital splitting in the presence of an octahedral ligand field. A large splitting between the t2g and eg AOs requires a substantial amount of energy for the electrons to overcome the energy gap (Δ) to comply with Hund’s Rule. Therefore, electrons will fill the lower energy t2g orbitals completely before populating the higher energy eg orbitals. Conversely, a HS state occurs with weaker ligand fields and smaller orbital splitting. In this case the energy required to populate the higher levels is substantially less than the pairing energy and the electrons fill the orbitals according to Hund’s Rule by populating the higher energy orbitals before pairing with electrons in the lower lying orbitals. An example of a metal ion that can exist in either a LS or HS state is Fe3+ in an octahedral ligand field. Depending on the ligands that are coordinated to this complex the Fe3+ can attain a LS or a HS state, as in Figure 1.Spin crossover refers to the transitions between high to low, or low to high, spin states. This phenomenon is commonly observed with some first row transition metal complexes with a d4 through d7 electron configuration in an octahedral ligand geometry. Spin transition curves are a common representation of SCO phenomenon with the most commonly observed types depicted in Figure 2 in which γHS (the high-spin molar fraction) is plotted vs. T. The figure shows a gradual spin transition (left), an abrupt transition with hysteresis (middle) and a two-step transition (right). For a transition to be considered gradual, it typically takes place over a large temperature range, even up to several hundred K, whereas for a transition to be considered abrupt, it should take place within 10 K or less.These curves indicate that a spin transition has occurred in a metal complex as temperature changed. The gradual transition curve is an indication that not all metal centers within the complex are undergoing the transition at the same temperature. The abrupt spin change with hysteresis indicates a strong cooperativity, or “communication”, between neighboring metal complexes. In the latter case, the material is bistable and can exist in the two different spin states with a different range of external stimuli (temperature in this case) for the two phenomena, namely LS → HS and HS → LS. The two-step transition is relatively rare but is observed, for example, with dinuclear SCO complexes for which the spin transition in one metal center renders the transition in the second metal center less favorable.There are several types of spin crossover that can occur in a complex; some of them are light induced excited state spin trapping (LIESST), ligand-driven light induced spin change (LD-LISC), and charge transfer induced spin transition (CTIST).