• Study Resource
  • Explore Categories
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Force Review – Use the papers in your binder if you can`t think of the
Force Review – Use the papers in your binder if you can`t think of the

... elevator car suddenly snapped. At first your would feel the force of acceleration, but eventually, if you could fall far enough with the car, you would feel nothing. This condition is known as freefall when only the force of gravity is working on objects. Skydivers who jump with parachutes from airp ...
Opposing Forces - Clayton State University
Opposing Forces - Clayton State University

Circular Motion and Rotation
Circular Motion and Rotation

Linear Momentum - White Plains Public Schools
Linear Momentum - White Plains Public Schools

Document
Document

Circular Motion/Gravity Class Notes
Circular Motion/Gravity Class Notes

2004mcanswers2
2004mcanswers2

... • 37. 44% Each of the beakers shown above is filled to the same depth h with liquid of density p. The area A of the flat bottom is the same for each beaker. Which of the following ranks the beakers according to the net downward force exerted by the liquid on the flat bottom, from greatest to least f ...
2001 AL Physics MC Suggested Solution 1. E. Any three forces
2001 AL Physics MC Suggested Solution 1. E. Any three forces

3 inertia newtons fi..
3 inertia newtons fi..

Edexcel Homework for Topic 10 (Rollercoasters and relativity
Edexcel Homework for Topic 10 (Rollercoasters and relativity

Colloquial understanding of a force
Colloquial understanding of a force

Review Game - SCHOOLinSITES
Review Game - SCHOOLinSITES

Problems - TTU Physics
Problems - TTU Physics

... These problems are taken from exams in Physics 4304 (Undergraduate Mechanics) from recent semesters. The primary purpose of these is to FORCE YOU to review undergraduate mechanics! Yes, there are a lot of problems & yes some are tedious. However, if you have trouble with these, you should wonder whe ...
circular motion ppt pdf
circular motion ppt pdf

... Newton and Satellite Motion Newton’s Law of Gravitation predicts artificial satellites can orbit the earth with centripetal acceleration. Satellites have acceleration towards the center of Earth, but they also have tangential speed to keep them in orbit! Astronauts in orbit are often described as “ ...
Lecture 8: Forces & The Laws of Motion
Lecture 8: Forces & The Laws of Motion

Weather Assessment Review
Weather Assessment Review

The Millikan Experiment
The Millikan Experiment

rotational motion
rotational motion

Chapter 4 - Steady Server Pages
Chapter 4 - Steady Server Pages

611-1820 (5-110) Greek Waiters Tray
611-1820 (5-110) Greek Waiters Tray

Pocket physics - Institute of Physics
Pocket physics - Institute of Physics

TUTORIAL 4 WORK, ENERGY AND POWER An escalator is used to
TUTORIAL 4 WORK, ENERGY AND POWER An escalator is used to

lectureslides09
lectureslides09

Forces
Forces

LESSON PLAN 1.3 Newton`s
LESSON PLAN 1.3 Newton`s

< 1 ... 151 152 153 154 155 156 157 158 159 ... 229 >

Mass versus weight



In everyday usage, the mass of an object is often referred to as its weight though these are in fact different concepts and quantities. In scientific contexts, mass refers loosely to the amount of ""matter"" in an object (though ""matter"" may be difficult to define), whereas weight refers to the force experienced by an object due to gravity. In other words, an object with a mass of 1.0 kilogram will weigh approximately 9.81 newtons (newton is the unit of force, while kilogram is the unit of mass) on the surface of the Earth (its mass multiplied by the gravitational field strength). Its weight will be less on Mars (where gravity is weaker), more on Saturn, and negligible in space when far from any significant source of gravity, but it will always have the same mass.Objects on the surface of the Earth have weight, although sometimes this weight is difficult to measure. An example is a small object floating in a pool of water (or even on a dish of water), which does not appear to have weight since it is buoyed by the water; but it is found to have its usual weight when it is added to water in a container which is entirely supported by and weighed on a scale. Thus, the ""weightless object"" floating in water actually transfers its weight to the bottom of the container (where the pressure increases). Similarly, a balloon has mass but may appear to have no weight or even negative weight, due to buoyancy in air. However the weight of the balloon and the gas inside it has merely been transferred to a large area of the Earth's surface, making the weight difficult to measure. The weight of a flying airplane is similarly distributed to the ground, but does not disappear. If the airplane is in level flight, the same weight-force is distributed to the surface of the Earth as when the plane was on the runway, but spread over a larger area.A better scientific definition of mass is its description as being composed of inertia, which basically is the resistance of an object being accelerated when acted on by an external force. Gravitational ""weight"" is the force created when a mass is acted upon by a gravitational field and the object is not allowed to free-fall, but is supported or retarded by a mechanical force, such as the surface of a planet. Such a force constitutes weight. This force can be added to by any other kind of force.For example, in the photograph, the girl's weight, subtracted from the tension in the chain (respectively the support force of the seat), yields the necessary centripetal force to keep her swinging in an arc. If one stands behind her at the bottom of her arc and abruptly stops her, the impetus (""bump"" or stopping-force) one experiences is due to acting against her inertia, and would be the same even if gravity were suddenly switched off.While the weight of an object varies in proportion to the strength of the gravitational field, its mass is constant (ignoring relativistic effects) as long as no energy or matter is added to the object. Accordingly, for an astronaut on a spacewalk in orbit (a free-fall), no effort is required to hold a communications satellite in front of him; it is ""weightless"". However, since objects in orbit retain their mass and inertia, an astronaut must exert ten times as much force to accelerate a 10‑ton satellite at the same rate as one with a mass of only 1 ton.On Earth, a swing set can demonstrate this relationship between force, mass, and acceleration. If one were to stand behind a large adult sitting stationary on a swing and give him a strong push, the adult would temporarily accelerate to a quite low speed, and then swing only a short distance before beginning to swing in the opposite direction. Applying the same impetus to a small child would produce a much greater speed.
  • studyres.com © 2026
  • DMCA
  • Privacy
  • Terms
  • Report