
On the b-ary Expansion of an Algebraic Number.
... where k0 0, a k0 6 0 if k0 > 0, the ak 's are integers from f0; 1; . . . ; b 1g and ak is non-zero for infinitely many indices k. The sequence (ak )k k0 is uniquely determined by u: it is its b-ary expansion. We then define the function nbdc, `number of digit changes', by nbdc(n; u; b) Cardf1 ...
... where k0 0, a k0 6 0 if k0 > 0, the ak 's are integers from f0; 1; . . . ; b 1g and ak is non-zero for infinitely many indices k. The sequence (ak )k k0 is uniquely determined by u: it is its b-ary expansion. We then define the function nbdc, `number of digit changes', by nbdc(n; u; b) Cardf1 ...
geopolitics of the indian ocean in the post
... neighborhoods Will be studied and we use it in a characterization result through the paper. Finally, we provide some examples relevant to the results we have obtained, and we also propose some open problems. ...
... neighborhoods Will be studied and we use it in a characterization result through the paper. Finally, we provide some examples relevant to the results we have obtained, and we also propose some open problems. ...
Embedding Locally Compact Semigroups into Groups
... devoted to the problem of embedding a topological semigroup (a semigroup with jointly continuous multiplication) into a topological group, but the semitopological version appears to have received scant attention. On the other hand there are good reasons for considering this case, among them the fact ...
... devoted to the problem of embedding a topological semigroup (a semigroup with jointly continuous multiplication) into a topological group, but the semitopological version appears to have received scant attention. On the other hand there are good reasons for considering this case, among them the fact ...
Brouwer fixed-point theorem

Brouwer's fixed-point theorem is a fixed-point theorem in topology, named after Luitzen Brouwer. It states that for any continuous function f mapping a compact convex set into itself there is a point x0 such that f(x0) = x0. The simplest forms of Brouwer's theorem are for continuous functions f from a closed interval I in the real numbers to itself or from a closed disk D to itself. A more general form than the latter is for continuous functions from a convex compact subset K of Euclidean space to itself.Among hundreds of fixed-point theorems, Brouwer's is particularly well known, due in part to its use across numerous fields of mathematics.In its original field, this result is one of the key theorems characterizing the topology of Euclidean spaces, along with the Jordan curve theorem, the hairy ball theorem and the Borsuk–Ulam theorem.This gives it a place among the fundamental theorems of topology. The theorem is also used for proving deep results about differential equations and is covered in most introductory courses on differential geometry.It appears in unlikely fields such as game theory. In economics, Brouwer's fixed-point theorem and its extension, the Kakutani fixed-point theorem, play a central role in the proof of existence of general equilibrium in market economies as developed in the 1950s by economics Nobel prize winners Kenneth Arrow and Gérard Debreu.The theorem was first studied in view of work on differential equations by the French mathematicians around Poincaré and Picard.Proving results such as the Poincaré–Bendixson theorem requires the use of topological methods.This work at the end of the 19th century opened into several successive versions of the theorem. The general case was first proved in 1910 by Jacques Hadamard and by Luitzen Egbertus Jan Brouwer.