• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Geo 2.7 notes
Geo 2.7 notes

Bernoulli Law of Large Numbers and Weierstrass` Approximation
Bernoulli Law of Large Numbers and Weierstrass` Approximation

... Bernoulli Law of Large Numbers and Weierstrass’ Approximation Theorem Márton Balázs∗ and Bálint Tóth∗ October 13, 2014 This little write-up is part of important foundations of probability that were left out of the unit Probability 1 due to lack of time and prerequisites. Here we give an elementa ...
Geometry  Notes – Lesson 5.5 Name __________________________________
Geometry Notes – Lesson 5.5 Name __________________________________

2.7 Proving Segment Relationships
2.7 Proving Segment Relationships

Problem Set 1
Problem Set 1

Theorem 2.1. Tv is a topologyfor v. Definition. For each x EX, 1T(X)is
Theorem 2.1. Tv is a topologyfor v. Definition. For each x EX, 1T(X)is

... Each of the theorems in Part One comes from one of the lists of theorems that we compiled in Math 5330 and Math 5331 last year. For each theorem in Part One, your proof may appeal to any theorem from those lists that precedes it. To prove the theorems in Part Two, you may appeal to any theorem from ...
Geometry  Notes – Lesson 4.5 Name ________________________________________
Geometry Notes – Lesson 4.5 Name ________________________________________

Proving that the angles of a triangle add up to 180 degrees: Proving
Proving that the angles of a triangle add up to 180 degrees: Proving

An angle inscribed in a semicircle is a right angle
An angle inscribed in a semicircle is a right angle

Fermat`s Last Theorem for regular primes
Fermat`s Last Theorem for regular primes

Advanced Geometry Placement Exam Topics
Advanced Geometry Placement Exam Topics

Advanced Geometry Placement Exam Topic List 1. Two
Advanced Geometry Placement Exam Topic List 1. Two

< 1 ... 207 208 209 210 211

Brouwer fixed-point theorem



Brouwer's fixed-point theorem is a fixed-point theorem in topology, named after Luitzen Brouwer. It states that for any continuous function f mapping a compact convex set into itself there is a point x0 such that f(x0) = x0. The simplest forms of Brouwer's theorem are for continuous functions f from a closed interval I in the real numbers to itself or from a closed disk D to itself. A more general form than the latter is for continuous functions from a convex compact subset K of Euclidean space to itself.Among hundreds of fixed-point theorems, Brouwer's is particularly well known, due in part to its use across numerous fields of mathematics.In its original field, this result is one of the key theorems characterizing the topology of Euclidean spaces, along with the Jordan curve theorem, the hairy ball theorem and the Borsuk–Ulam theorem.This gives it a place among the fundamental theorems of topology. The theorem is also used for proving deep results about differential equations and is covered in most introductory courses on differential geometry.It appears in unlikely fields such as game theory. In economics, Brouwer's fixed-point theorem and its extension, the Kakutani fixed-point theorem, play a central role in the proof of existence of general equilibrium in market economies as developed in the 1950s by economics Nobel prize winners Kenneth Arrow and Gérard Debreu.The theorem was first studied in view of work on differential equations by the French mathematicians around Poincaré and Picard.Proving results such as the Poincaré–Bendixson theorem requires the use of topological methods.This work at the end of the 19th century opened into several successive versions of the theorem. The general case was first proved in 1910 by Jacques Hadamard and by Luitzen Egbertus Jan Brouwer.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report