mrfishersclass
... By the Exterior Angle Inequality Theorem, m14 > m4, m14 > m11, m14 > m2, and m14 > m4 + m3. Since 11 and 9 are vertical angles, they have equal measure, so m14 > m9. m9 > m6 and m9 > m7, so m14 > m6 and m14 > m7. Answer: Thus, the measures of 4, 11, 9, 3, 2, 6, and 7 ar ...
... By the Exterior Angle Inequality Theorem, m14 > m4, m14 > m11, m14 > m2, and m14 > m4 + m3. Since 11 and 9 are vertical angles, they have equal measure, so m14 > m9. m9 > m6 and m9 > m7, so m14 > m6 and m14 > m7. Answer: Thus, the measures of 4, 11, 9, 3, 2, 6, and 7 ar ...
1. Projective Space Let X be a topological space and R be an
... Let X be a topological space and R be an equivalence relation on X. The set of all Requivalence classes in X is denoted by X/R. The natural map π : X → X/R sending x to its equivalent class [x] is called the quotient map. We say that U ⊂ X/R is open if π −1 (U ) is open in X. This topology on X/R is ...
... Let X be a topological space and R be an equivalence relation on X. The set of all Requivalence classes in X is denoted by X/R. The natural map π : X → X/R sending x to its equivalent class [x] is called the quotient map. We say that U ⊂ X/R is open if π −1 (U ) is open in X. This topology on X/R is ...
boundary behavior of poisson integrals on symmetric spaces
... product of halfplanes or discs as soon as one tries to make the definition intrinsic, i.e., independent of the geometry of the ambient Euclidean space; it is a reflection of the fact that there are infinitely many geodesic lines going from an interior point to a given boundary point. We note, howeve ...
... product of halfplanes or discs as soon as one tries to make the definition intrinsic, i.e., independent of the geometry of the ambient Euclidean space; it is a reflection of the fact that there are infinitely many geodesic lines going from an interior point to a given boundary point. We note, howeve ...
Brouwer fixed-point theorem
Brouwer's fixed-point theorem is a fixed-point theorem in topology, named after Luitzen Brouwer. It states that for any continuous function f mapping a compact convex set into itself there is a point x0 such that f(x0) = x0. The simplest forms of Brouwer's theorem are for continuous functions f from a closed interval I in the real numbers to itself or from a closed disk D to itself. A more general form than the latter is for continuous functions from a convex compact subset K of Euclidean space to itself.Among hundreds of fixed-point theorems, Brouwer's is particularly well known, due in part to its use across numerous fields of mathematics.In its original field, this result is one of the key theorems characterizing the topology of Euclidean spaces, along with the Jordan curve theorem, the hairy ball theorem and the Borsuk–Ulam theorem.This gives it a place among the fundamental theorems of topology. The theorem is also used for proving deep results about differential equations and is covered in most introductory courses on differential geometry.It appears in unlikely fields such as game theory. In economics, Brouwer's fixed-point theorem and its extension, the Kakutani fixed-point theorem, play a central role in the proof of existence of general equilibrium in market economies as developed in the 1950s by economics Nobel prize winners Kenneth Arrow and Gérard Debreu.The theorem was first studied in view of work on differential equations by the French mathematicians around Poincaré and Picard.Proving results such as the Poincaré–Bendixson theorem requires the use of topological methods.This work at the end of the 19th century opened into several successive versions of the theorem. The general case was first proved in 1910 by Jacques Hadamard and by Luitzen Egbertus Jan Brouwer.