* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download anatomy and physiology of the cardiovascular system
Heart failure wikipedia , lookup
Coronary artery disease wikipedia , lookup
Electrocardiography wikipedia , lookup
Artificial heart valve wikipedia , lookup
Mitral insufficiency wikipedia , lookup
Cardiac surgery wikipedia , lookup
Arrhythmogenic right ventricular dysplasia wikipedia , lookup
Lutembacher's syndrome wikipedia , lookup
Myocardial infarction wikipedia , lookup
Antihypertensive drug wikipedia , lookup
Heart arrhythmia wikipedia , lookup
Quantium Medical Cardiac Output wikipedia , lookup
Dextro-Transposition of the great arteries wikipedia , lookup
ANATOMY AND PHYSIOLOGY OF THE CARDIOVASCULAR SYSTEM LOCATION OF THE HEART RESTS ON THE DIAPHRAGM NEAR THE MIDLINE OF THE THORACIC CAVITY PERICARDIUM CONFINES HEART TO THE MEDIASTINUM ALLOWS SUFFICIENT FREEDOM OF MOVEMENT. CONSISTS OF TWO PARTS:THE FIBROUS AND SEROUS. FIBROUS:THIN INELASTIC, DENSE IRREGULAR CONNECTIVE TISSUE ---HELPS IN PROTECTION, ANCHORS HEART TO MEDIASTINUM SEROUS: THINNER, MORE DELICATE DIVIDED INTO PARIETAL AND VISCERAL LAYERS OF THE HEART WALL EPICARDIUM: COMPOSED OF MESOTHELIUM AND DELICATE CONNECTIVE TISSUE (IMPARTS A SLIPPERY TEXTURE TO THE OUTER SURFACE OF THE HEART). MYOCARDIUM:RESPONSIBLE FOR PUMPING ENDOCARDIUM: THIN LAYER OF ENDOTHELIUM WHICH IS CONTINOUS WITH THE LINING OF THE LARGE BLOOD VESSELS ATTACHED TO THE HEART. CHAMBERS OF THE HEART FOUR CHAMBERS TWO AURICLES PRESENT SERIES OF GROOVES CALLED SULCI CONTAIN FAT AND CORONARY BLOOD VESSEL SULCUS MYOCARDIAL THICKNESS AND FUNCTION ATRIA : THIN WALLED VENTRICLES :THICK WALLED LT VENTRICLE IS THICKER THAN THE RT VENTRICLE. HEART VALVES AND CIRCULATION OF BLOOD ATRIOVENTRICULAR & SEMILUNAR VALVES SYSTEMIC AND PULMONARY CIRCULATION LEFT SIDE IS A PUMP TO THE SYSTEMIC CIRCULATION. RIGHT SIDE IS A PUMP TO THE PULMONARY CIRCULATION. THE CONDUCTION SYSTEM INHERENT AND RHYTHMICAL BEAT IS DUE TO AUTORHYTHMIC FIBERS OF THE CARDIAC MUSCLE. THESE FIBERS HAVE 2 IMPORTANT FUNCTION - ACT AS PACE MAKER - FORM THE CONDUCTION SYSTEM SA NODE WOULD INITITATES ACTION POTENTIAL ABOUT EVERY 0.6 SEC OR 100 TIMES/MIN THE ANS ALTERS THE STRENGTH AND TIMING OF HEART BEATS. PHYSIOLOGIC CHARACTERISTICS OF THE CONDUCTION CELLS AUTOMATICITY EXCITABILITY CONDUCTIVITY RHYTHMICITY CONTRACTILITY TONICITY CARDIAC CYCLE ATRIAL SYSTOLE LASTS FOR 0.1 SEC ATRIAL DEPOLARIZATION CAUSES ATRIAL SYSTOLE IT CONTRIBUTES A FINAL 25mL OF BLOOD TO EACH VENTRICLE END OF ATRIAL SYSTOLE IS ALSO END OF VENTRICULAR DIASTOLE END-DIASTOLIC VOLUME IS 130 mL VENTRICULAR SYSTOLE LASTS FOR 0.3 SEC IT IS CAUSED BY VENTRICULAR DEPOLARIZATION ISOVOLUMETRIC CONTRACTION LASTS FOR 0.05 SECONDS WHEN BOTH THE SEMILUNAR AND ATRIOVENTRICULAR VLAVES ARE CLOSED. THE SL VALVES OPEN WHEN -THE LEFT VENTRICULAR PRESSURES SURPASSES AORTIC PRESSURE(80 MM OF MERCURY) -THE RIGHT VENTRICULAR PRESSURE RISES ABOVE PULMONARY PRESSURE (20 mmHg) SL VALVES OPEN FOR 0.25 SEC THE LEFT VENTRICLE EJECTS ABOUT 70 ML INTO THE AORTA THE RIGHT VENTRICLE EJECTS THE SAME VOLUME INTO THE PULMONARY TRUNK. END SYSTOLIC VOLUME IS 60mL IN EACH VENTRICLE . RELAXATION PERIOD BOTH ATRIA AND VENTRICLES ARE RELAXED .IT LASTS FOR 0.4 SEC. WHEN HEART BEATS FASTER THE RELAXATION TIME SHORTENS. VENTRICULAR REPOLARIZATION CAUSES VENTRICULAR DAISTOLE. HEART SOUNDS PRODUCED FROM BLOOD TURBULENCE CAUSED BY CLOSING OF HEART VALVES S1 – ATRIOVENTRICULAR VALVE CLOSURE S2 – SEMILUNAR VALVE CLOSURE S3 – RAPID VENTRICULAR FILLING S4 – ATRIAL SYSTOLE CARDIAC OUTPUT CO = SV X HR mL/min mL/beat (Beats/min) FOR A RESTING ADULT CO = 70mL/beat x75beats/min = 5250 mL/min = 5.25 L/min REGULATION OF STROKE VOLUME THREE FACTORS REGULATE STROKE VOLUME -PRELOAD -CONTRACTILITY -AFTERLOAD PRELOAD STRETCH OF CARDIAC MUSCLE PRIOR TO CONTRACTION. FRANK-STARLING LAW PRELOAD IS PROPOTIONAL TO END DIASTOLIC VLOUME IF HR IS MORE THAN 160 BEATS/MIN STROKE VOLUME DECLINES DUE TO SHORT FILLING TIME. CONTRACTILITY IT IS THE STRENGTH OF CONTRACTION AT ANY GIVEN PRELOAD. POSITIVE AND NEGATIVE IONOTROPICS. STIMULATION OF SYMPATHETIC DIVISION OF ANS LEADS TO POSITVE IONOTROPIC EFFECT INHIBITION OF SYMPATHETIC DIVISION OF ANS LEADS TO NEGATIVE IONOTROPIC EFFECT AFTERLOAD THE PRESSURE THAT MUST BE OVERCOME BEFORE A SEMILUNAR VALVE CAN OPEN IS TERMED THE AFTERLOAD. INCREASE IN AFTERLOAD CAUSE DECREASE IN STROKE VOLUME HTN AND AHTEROSCLEROSIS INCREASES THE AFTERLOAD. REGUALTION OF HEART RATE SA NODE INITIATES 100 BEATS/MIN IF LEFT TO ITSELF. TISSUE REQUIRE DIFFERENT VOLUME OF BLOOD FLOW UNDER DIFFERENT CONDITIONS(EX: EXERCISE) ANS AND HORMONES OF ADRENAL MEDULLA ARE IMPORTANT IN REGULATING THE HEART RATE. AUTONOMIC REGULATION OF HEART RATE INPUT TO CARDIOVASCULAR CENTRE HIGHER BRAIN CENTER: CEREBRAL CORTEX, LYMBIC SYSTEM, HYPOTHALAMUS SENSORY RECEPTORS: SYMPATHETIC NEURONS EXTEND FROM MEDULLA OBLANGATA PROPRIRECEPTORS, CHEMORECEPTORS, BARORECEPTORS. THE SPINAL CORD (thoracic region) CARDIAC ACCELERATOR NERVE EXTENDS TO SA, AV NODES TRIGERS NOREPINEPHRINE NOR-EPINEPHRINE HAS 2 EFFECTS -IN SA NODE, SPEEDS THE RATE OF SPONTANEOUS DEPOLARIZATION -IN AV NODE,INCREASES CONTRACTILITY INCREASES STROKE VOLUME PARASYMPATHETIC EFFECT PARASYMPATHETIC NERVE REACHES THE HEART VIA LEFT VAGUS (x) NERVES THEY RELAESE ACETYL CHOLINE, WHICH DECREASES THE HEART RATE AT REST PARASYMPATHETIC STIMULATION PREDOMINATES CHEMICAL REGULATION OF HEART RATE HORMONES: EPINEPHRINE AND NOREPINEPHRINE, THROID HROMONE ALSO INCREASES HEART RATE CATIONS: ELEVATED K+ AND Na+ DECREASES HEART RATE, MODERATE INCREASE IN INTERSTITIAL Ca+ LEVELS SPEEDS HEART RATE. OTHER FACTORS IN HEART RATE REGULATION AGE GENDER PHYSICAL FITNESS BODY TEMPERATURE STRUCTURE AND FUNCTIONS OF BLOOD VESSELS BODY CONTAINS THREE KINDS OF CAPILLARIES CONTINUOUS- LUNG, SMMOTH MUSCLE, CONNECTIVE TISSUES FENESTRATED- KIDNEY, SMALL INTESTINE,BRAIN SINUSOIDS- LIVER RED BONE MARROW, SPLEEN AND ENDOCRINE GLANDS BLOOD DISTRIBUTION IN THE CARDIOVASCULAR SYSTEM PULMONARY VESSELS - 9% HEART – 7% SYSTEMIC ARTERIES AND ARTERIOLES SYSTEMIC CAPILLARIES – 7% - 13% SYSTEMIC VEINS AND VENULES – 64% HEMODYNAMIC AFFECTING BLOOD FLOW BLOOD PRESSURE RESISTANCE VENOUS RETURN BLOOD PRESSURE DURING SYSTEMIC CIRCULATION, BLOOD PRESSURE FALLS AS THE DISTANCE FROM THE LEFT VENTRICLE INCREASES IN ARTERIOLES AND ARTERIES – 35 mm Hg IN VENOUS END OF CAPILLARIES– 16mm Hg WHEN BLOOD FLOW IN RT.VENTRICLE -0 mmHg MAP = DIASTOLIC PRESSURE + 1/3 (SYS PRESSURE – DIASTOLIC PRESSURE) VASCULAR RESISTANCE IT IS THE OPPOSTION TO BLOOD FLOW DUE TO FRICTION BETWEEN BLOOD AND THE WALLS OF BLOOD VESSELS. VASCULAR RESISTANCE DEPENDS ON SIZE OF THE LUMEN- R IS INVERSELY PROPOTIONAL TO 1/d BLOOD VISCOSITY TOTAL BLOOD VESSEL LENGTH 4 VENOUS RETURN DEPENDS ON HEART CONTRACTION PRESSURE IN THE RT ATRIUM BESIDES THIS SKELETAL MUSCLE PUMP RESPIRATORY PUMP VELOCITY OF BLOOD FLOW VELOCITY IS INVERSELY PROPOTIONAL TO CROSS SECTIONAL AREA. VELOCITY DECREASES AS IT PROCEEDS FROM ARTERIES, ARTERIOLES,CAPILLAREIS VELOCITY INCREASES AS IT PROCEEDS FROM VENULES, VEINS. THIS ALLOWS EXCHANGE OF MATERIALS IN THE CAPILLARIES. CONTROL OF BLOOD PRESSURE AND BLOOD FLOW ROLE OF CARDIOVASCULAR CENTRE PROPRIORECEOTORS BARORECEPTORS CHEMORECEPTORS NEURAL REGULATION 0F BLOOD PRESSURE BARORECEPTORS CHEMORECEPTORS BARORECEPTORS PRESSURE SENSITIVE LOCATED IN THE AORTA, INTERNAL CAROTID AND OTHER LARGE ARTERIES. 2 IMPORTANT BARORECEPTOR REFLEX ARE - CAROTID SINUS REFLEX - AORTIC REFLEX CHEMORECEPTOR REFLEX PRESENT CLOSE TO THE - BARORECEPTORS OF CAROTID SINUS AND ARCH OF AORTA - THEY ARE CALLED CAROTID BODIES AND AORTIC BODIES. HORMONAL REGULATION OF BLOOD PRESSURE RENIN ANGIOTENSIN-ALDOSTERONE MECHANISM EPINEPHRINE AND NOR EPINEPHRINE ANTIDIURETIC HORMONE ATRIAL NATRIURETIC PEPTIDE AUTOREGULATION OF BLOOD PRESSURE ABILTY OF TISSUE TO AUTOMATICALLY ADJUST ITS BLOOD FLOW TO MATCH ITS METABLOIC DEMAND IS CALLED AUTOREGULATION. MAINLY DURING EXERCISE. TWO TYPE OF STIMULI CAUSES AUTOREGULATORY CHANGESHSICALY - PHYSICAL CHANGE -VASODILATING AND VASOCONSTRICTING CHEMICALS PHYSICAL CHANGES WARMING AND COOLING CAUSES VASODILATION AND VASOCONSTRICTION. SMOOTH MUSCLE IN ARTERIOLE EXHIBIT MYOGENIC RESPONSE VASODILATING AND VASOCONSTRICTING CHEMICALS SEVERAL CELLS RELEASE A WIDE VARIETY OF CHEMICALS THAT ALTER THE BLOOD VESSEL DIAMETER VASODILATORS - K+, H+, LASCTIC ACID AND ADENOSINE AND MAINLY NO VASOCONSTRICTORS – THROMBAXANE A2 , SEROTONIN AND ENDOTHELINS