Download Appendix L: Climate impacts and adaptation actions for shrub

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Climate resilience wikipedia , lookup

Politics of global warming wikipedia , lookup

Global warming wikipedia , lookup

Climate engineering wikipedia , lookup

Citizens' Climate Lobby wikipedia , lookup

Climate sensitivity wikipedia , lookup

Climate governance wikipedia , lookup

Effects of global warming on human health wikipedia , lookup

Climate change adaptation wikipedia , lookup

Atmospheric model wikipedia , lookup

Media coverage of global warming wikipedia , lookup

Climate change feedback wikipedia , lookup

Climate change in Tuvalu wikipedia , lookup

Solar radiation management wikipedia , lookup

Economics of global warming wikipedia , lookup

Attribution of recent climate change wikipedia , lookup

Scientific opinion on climate change wikipedia , lookup

Public opinion on global warming wikipedia , lookup

Climate change in the United States wikipedia , lookup

Climate change and agriculture wikipedia , lookup

Effects of global warming wikipedia , lookup

Years of Living Dangerously wikipedia , lookup

Climate change and poverty wikipedia , lookup

Surveys of scientists' views on climate change wikipedia , lookup

Effects of global warming on humans wikipedia , lookup

General circulation model wikipedia , lookup

Climate change, industry and society wikipedia , lookup

IPCC Fourth Assessment Report wikipedia , lookup

Transcript
Appendix L: Climate impacts and adaptation actions for shrub-steppe
TheWashington-BritishColumbiaTransboundary
Climate-ConnectivityProjectengagedsciencepracticepartnershipstoidentifypotentialclimate
impactsonwildlifehabitatconnectivityand
adaptationactionsforaddressingtheseimpactsin
thetransboundaryregionofWashingtonandBritish
Columbia.iProjectpartnersfocusedtheirassessment
onasuiteofcasestudyspecies,vegetationsystems,
andregionschosenfortheirsharedprioritystatus
amongprojectpartners,representationofdiverse
habitattypesandclimatesensitivities,anddata
Photo:Famartin
availability.Thisappendixdescribespotentialclimate
FigureL.1.Shrub-steppevegetation.
impactsandadaptationactionsidentifiedforshrubsteppevegetationcommunities.1
Shrub-steppeisthedominantvegetationtypefoundintheColumbiaPlateauecoregionofthePacific
Northwest.WithintheWashington-BritishColumbiatransboundaryregion,shrub-steppecommunities
arehighlyfragmentedduetoagricultural,residential,andcommercialdevelopment.Additionalthreats
toshrub-steppecommunitiesincludechangesinfireregimefromwildfiresuppressionandinvasive
cheatgrass(Bromustectorum),intensivegrazingpressurefromcattle,andincreasingenergyextraction
activitiesacrosstheregion.2
Futureclimatechangemaypresentadditionalchallengesandneedsforshrub-steppehabitat
connectivity.3-4First,climatechangemayimpactshrub-steppecorehabitatareasandcorridorsinways
thatmaymakethemmoreorlesspermeabletowildlifemovement.Second,existingshrub-steppecore
habitatareasandcorridorsmaybedistributedonthelandscapeinwaysthatmakethemmoreorless
abletoaccommodateclimate-drivenshiftsindistributionsofshrub-steppespecies.Forsuchreasons,
connectivityenhancementhasbecomethemostfrequentlyrecommendedclimateadaptationstrategy
forbiodiversityconservation.5However,littleworkhasbeendonetotranslatethisbroadstrategyinto
specific,on-the-groundactions.Furthermore,toourknowledge,nopreviousworkhasidentifiedspecific
climateimpactsoradaptationresponsesforshrub-steppehabitatconnectivity(butseeMichalaketal.
2014).2Toaddresstheseneeds,wedescribehereanovelefforttoidentifyandaddresspotentialclimate
impactsonshrub-steppehabitatconnectivityinthetransboundaryregionofWashingtonandBritish
Columbia.
Potential climate impacts on habitat connectivity
Toidentifypotentialclimateimpactsontransboundaryshrub-steppehabitatconnectivity,project
partnerscreatedaconceptualmodelthatidentifiesthekeylandscapefeaturesandprocessesexpected
toinfluenceshrub-steppehabitatconnectivity,whichofthoseareexpectedtobeinfluencedbyclimate,
andhow(AppendixL.2).Simplifyingcomplexecologicalsystemsinsuchawaycanmakeiteasierto
identifyspecificclimateimpactsandadaptationactions.Forthisreason,conceptualmodelshavebeen
promotedasusefuladaptationtools,andhavebeenappliedinavarietyofothersystems.6Theshrub
i
ThisreportisAppendixLoftheWashington-BritishColumbiaTransboundaryClimate-ConnectivityProject;for
1
moreinformationabouttheproject’srationale,partners,methods,andresults,seeKrosbyetal.(2016). Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project
1
Shrub-steppe
steppeconceptualmodelwasdevelopedusingpeer-reviewedarticlesandreports,projectparticipant
expertise,andreviewbyspeciesexperts.Thatsaid,theresultingmodelisintentionallysimplified,and
shouldnotbeinterpretedtorepresentacomprehensiveassessmentofthefullsuiteoflandscape
featuresandprocessescontributingtoshrub-steppehabitatconnectivity.
Projectparticipantsusedconceptualmodelsinconjunctionwithmapsofprojectedfuturechangesin
speciesdistributions,vegetationcommunities,andrelevantclimatevariablestoidentifypotential
impactsonshrub-steppeconnectivity.Becauseakeyprojectgoalwastoincreasepractitionerpartners’
capacitytoaccess,interpret,andapplyexistingclimateandconnectivitymodelstotheirdecisionmaking,wereliedonafewprimarydatasetsthatarefreelyavailable,spanallorpartofthe
transboundaryregion,andreflecttheexpertiseofprojectsciencepartners.Thesesourcesinclude
habitatconnectivitymodelsproducedbytheWashingtonConnectedLandscapesProject,7,8future
climateprojectionsfromtheIntegratedScenariosofthePacificNorthwestEnvironment9andthePacific
ClimateImpactsConsortium’sRegionalAnalysisTool,10andmodelsofprojectedrangeshiftsproduced
aspartofthePacificNorthwestClimateChangeVulnerabilityAssessment.11
Keyimpactsontransboundaryshrub-steppeconnectivityidentifiedviathisapproachincludechangesin
vegetation,changesindisturbanceregimes,changesininvasivespecies,andchangesinlanduse.
Changes in vegetation
Climatechangemayimpactshrub-steppehabitatconnectivitybychangingtheextentandlocationof
areasofclimaticsuitabilityforplantspeciesassociatedwithshrub-steppecommunities;thismayrender
someexistingcorehabitatareasandcorridorsunsuitableforshrub-steppespecies,and/orcreatenew
areasofsuitability.Twotypesofmodelsareavailablethatestimatefuturechangesinvegetationforthe
transboundaryregion:climaticnichemodelsandmechanisticmodels.ii
Climaticnichemodels(CNM)areavailableforbigsagebrush(Artemisiatridentata),adominantshrubsteppeplantspecies.Projectedchangesforbigsagebrushareavailablebasedonfiveclimatemodels
(BCCRBCM2.0,CCCMACGCM3,CSIROMK3.0,INMCM3.0,andMIROC3.2MEDRES)iiiforthe2080s
undertheA2(high)carbonemissionsscenarioiv(AppendixL.3).Underallfiveclimatemodels,the
OkanaganValleyandthenorthernsectionoftheColumbiaPlateauareprojectedtoremainclimatically
suitableforbigsagebrush.Inaddition,foramajorityofclimatemodels,adjacentuplandareasbecome
moreclimaticallysuitableforbigsagebrush(AppendixL.3).Projectedincreasesinspringprecipitation
(AppendixL4:TotalSpringPrecipitation)andthefrost-freeperiod(AppendixL4:NumberofFrostDays)
mayhelppromotebigsagebrushgerminationandestablishment.
ii
Climaticnichevegetationmodelsmathematicallydefinetheclimaticconditionswithinagivenvegetationtype’s
currentdistributionandthenprojectwhereonthelandscapethoseconditionsareexpectedtooccurinthefuture.
Thesemodelsdonotincorporateotherimportantfactorsthatdeterminevegetationsuchassoilsuitability,
dispersal,competition,andfire.Incontrast,mechanisticvegetationmodelsdoincorporatetheseecological
processesaswellasprojectedclimatechangesandpotentialeffectsofcarbondioxidefertilization.However,
mechanisticmodelsonlyprojectedchangestoverygeneralvegetationtypessuchascoldforest,shrubsteppe,or
grassland.
iii
Globalcirculationmodelssimulatetheresponseoftheglobalclimatesystemtoincreasinggreenhousegas
21,22
concentrations.
iv
Emissionsscenariosweredevelopedbyclimatemodelingcentersforuseinmodelingglobalandregionalclimaterelatedeffects.A2isahigh,“businessasusual”scenarioinwhichemissionsofgreenhousegasescontinuetorise
st
untiltheendofthe21 century,andatmosphericCO2concentrationsmorethantripleby2100relativetopre23
industriallevels. Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project
2
Shrub-steppe
InadditiontothebigsagebrushCNM,thereareCNMandmechanisticmodelsthatestimatefuture
changesinvegetationtypes(ratherthanindividualplantspecies)forthetransboundaryregion.Both
setsofmodelsarebasedonresultsfromtwoCMIP3globalcirculationmodels(CGCM3.1(T47)and
UKMO-HadCM3),vusingtheA2(high)emissionsscenario.ivWhileCNMvegetationmodelsprojectstable
orimprovingclimaticconditionsforsagebrushinandaroundtheOkanaganValley,mechanistic
vegetationmodelsprojectencroachmentof“coolopenforestwoodland”vegetationintotheValleyby
theendofthecentury.UndertheUKMO-HadCM3scenario,thistransformationisextensiveand
includesthelowlandsadjacenttotheOkanaganValleyitself.UndertheCGCM3.1(T47)scenario,the
lowlandvegetationadjacenttothevalleyremains“coolforest,”althoughmuchoftheOkanaganValley
andnorthernColumbiaPlateautransitionto“coolopenforestwoodland.”vi12
Changes in disturbance regimes
Climatechangemayaffectshrub-steppehabitatconnectivitybyincreasingthefrequencyandseverityof
summerdrought(AppendixL.4:DrySpellDuration;SoilMoisture,July-September)andincreasingthe
riskofwildfires(AppendixL.4:DayswithHighFireRisk).Whilefirecanhelppreventtreeencroachment
intoshrub-steppecommunities,13anincreaseinfirefrequencymaypreventsagebrushseedlingsfrom
establishing,andfiresthataretooseverecanscorchthesoilandpreventregrowthofvegetation.14
Impactsofincreasingfireriskonshrub-steppehabitatconnectivitywillthusultimatelydependonfire
returnintervals,severity,andsize,andonthesubsequentsuccessionaltrajectoriesofvegetation.
Changes in invasive species
Cheatgrassisaninvasivespecieswithdevastatingaffectsonshrub-steppecommunities.Climatechange
couldinfluencethedistributionandinvasivenessofcheatgrassduetoitssensitivitytochangesin
temperature,precipitation,andfireregime.2CheatgrassCNMsfortheColumbiaPlateauprojecteither
nochangeorashrinkingclimaticnichespaceforcheatgrass,15whichwouldhaveapositiveaffecton
shrub-steppehabitatconnectivity.However,CNMsdonotaccountfortheinfluenceoffireonhabitat
suitability.Projectedincreasesinfirerisk(AppendixL.4:DayswithHighFireRisk)maypromotecheat
grassinvasioninshrub-steppecommunities,negativelyaffectinghabitatconnectivity.
Changes in land use
Climatechangemayleadtochangesinthelocationandproductivityofagriculture.Inparticular,the
OkanaganValleyandnorthernColumbiaPlateaucouldbecomemoreproductiveforvineyards.16
VineyardacreageintheOkanaganhasexpandedinrecentyears17andchangingclimateconditionscould
makeitprofitabletoexpandvineyardsintohigherelevations.Warmeranddrierconditionsandreduced
wateravailabilityfromlossofsnowpack(AppendixL.4:Spring(April1st)Snowpack)couldalsoincrease
theneedforirrigation,placingadditionalstressonwaterresources.Suchchangesinlandusewould
negativelyaffectshrub-steppehabitatconnectivity.
v
21,22
CGCM3.1(T47)andUKMO-HadCM3aretwoGlobalCirculationModels(GCMs)
whicheachprojectdifferent
potentialfutureclimatescenarios.TheUKMO-HadCM3modelprojectsamuchhotteranddriersummer,whilethe
CGCM3.1(T47)projectsgreaterprecipitationincreasesinspring,summerandfall.Forthesereasons,theUKMOHadCM3couldbeconsidereda“hot-dry”future,whiletheCGCM3.1(T47)couldbeconsidereda“warm-wet”
futurewithinthePacificNorthwest.
vi
Thedistinctionbetween“coolforest”and“coolopenforestwoodland”isthattheformerforesttypeis>10
12
meterstallwhilethelatteris<10meterstall.
Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project
3
Shrub-steppe
Adaptation responses
Afteridentifyingpotentialclimateimpactsonshrub-steppeconnectivity,projectparticipantsused
conceptualmodelstoidentifywhichrelevantlandscapefeaturesorprocessescouldbeaffectedby
managementactivities,andsubsequentlywhatactionscouldbetakentoaddressprojectedclimate
impacts(AppendixL.2).Keyadaptationactionsidentifiedbythisapproachfallunderthreemain
categories:thosethataddresspotentialclimateimpactsonshrub-steppehabitatconnectivity,those
thataddressnovelhabitatconnectivityneedsforpromotingclimate-inducedshiftsinshrub-steppe
distributions,andthosethatidentifyspatialprioritiesforimplementation.
Addressing climate impacts to shrub-steppe connectivity
Actionstoaddresspotentialchangesinvegetationtypeinclude:
•
Developingamonitoringplanforshrub-steppe,particularlywithinkeyhabitatareasand
corridors,andareasofprojectedexpansion.Becausemodelprojectionsshowafairamountof
uncertaintyregardingfuturechangesinvegetation,monitoringchangeswillbecriticalforrapid
detectionandresponsetoimpactsonhabitatconnectivity.
•
Forestencroachmentcouldbelimited,thoughlikelyjusttemporarily,bymechanicallyremoving
invadingtreesorusingprescribedburnstoreducetreerecruitment.
•
Continuingbestmanagementpracticesformaintaininghighqualityshrub-steppecommunities
mayincreasetheresilienceofcorehabitatareasandcorridorstofuturechange.vii18
•
Facilitatingmigrationofbigsagebrushpopulationsthatarelocallyadaptedtowarmerclimatic
conditionsmayhelptomaintainshrub-steppecommunitiesunderfuturechange.
Actionstoaddressthepotentialforclimatechangetoimpactconnectivitythroughmorefrequentand
severewildfiresinclude:
•
Usingprescribedburnstoreducetheriskofcatastrophicwildfiresthatcouldnegativelyimpact
shrub-steppecorehabitatareasandcorridors.Morefrequent,smallerfiresmaycreateapatchy
mosaicthatcanhelppreventlarge,catastrophicfires.Indevelopedareas,implementinganew
prescribedburnprogramwouldrequirecarefulevaluationofassociatedrisksandbenefits.
•
Referencingtribalpracticestoidentifytraditionalstrategiesformanagingfireriskandother
potentialclimateimpacts.
•
Incorporatingprojectionsandobservationsofclimaticchanges(e.g.,earlieronsetoffireseason)
toinformthetimingoffirepreventiontechniquesasconditionschange,inordertomaximize
safetyandeffectiveness.
Actionstoaddresspotentialchangesininvasivespeciesinclude:
•
Inareasheavilyinvadedbycheatgrass,consideringprescribedburningincombinationwith
herbicideandnativeplantreseedingefforts.19
•
Incorporateinvasivespeciesmanagementintoallactivitiesrelatedtohabitatconnectivity
conservation.
vii
18
Forexample,seemanagementrecommendationsfromAltmanandHolmes(2000). Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project
4
Shrub-steppe
Actionstoaddresspotentialchangesinlanduseinclude:
•
Managingaccessinshrub-steppecorehabitatareasandcorridorstoreduceimpactsfrom
recreation,grazing,andotheruses.
Enhancing connectivity to facilitate range shifts
Actionsthatmayhelpshrub-steppespeciesadjusttheirrangestotrackshiftsintheirareasofclimatic
suitabilityinclude:
•
Maintainingandrestoringcorridorsthatspanelevationgradients(e.g.,climate-gradient
corridors,8AppendixL.1),tofacilitatethedispersalofshrub-steppespeciesintocooler,higher
elevationhabitatsastheclimatewarms.Climate-gradientcorridorsmaybeparticularly
importantforsmallanimalsandplants,suchasbigsagebrush,thathavelimitedmobility,as
thesespeciesmayneedtoresideincorridorsratherthansimplymovethroughthem.
•
Maintainingandrestoringcorridorsbetweenareasofdecliningclimaticsuitabilityandareasof
stableorincreasingsuitability(AppendixL.3).
Spatial priorities for implementation
Spatialprioritiesforimplementationoftheadaptationactionsdescribedaboveinclude:
•
Landscapeintegrityandclimate-gradientcorridors(AppendixL.1).Linkagesthatareingood
naturalcondition(i.e.,landscapeintegritycorridors7)andthatspanclimategradients(i.e.,
climate-gradientcorridors8)mayhelppromotedispersalofshrub-steppeplantspeciesamong
existinghabitatareasandintonewlysuitablehabitatastheclimatewarms.
•
ConnectivitypriorityareasidentifiedfortheOkanagan-Kettleregion(AppendixL.1).20
Policy considerations
Referrals response
Actionsforaddressingclimateimpactsonshrub-steppeconnectivitythroughFirstNationsandtribal
referralsprocessesinclude:
•
Considerpotentialimpactsonhabitatconnectivityduringthereferralsprocess,particularlyfor
activitiesthatmayimpacthabitatconnectivityneeds(e.g.,climategradientcorridors)under
climatechange.
•
Lookforopportunitiestoreducegrazingpressureinkeycorridors.
Land and water use planning and zoning
Actionsforaddressingclimateimpactsonshrub-steppeconnectivitythroughlandandwateruse
planningandzoninginclude:
•
Carefullyreviewingpermitrequestsfornewirrigationwithdrawalswithincorehabitatareasand
corridors,toensurethatwaterresourcesremainavailableforshrub-steppespeciesifsummers
becomehotteranddrier.
•
Monitoringtrendsandreviewingpoliciesrelatingtovineyardestablishment.Strivetoavoid
establishingvineyardsinshrub-steppecorehabitatareasorcorridors.
•
UsinglargeparcelzoningtomaintaincontiguityofnaturalareaswithinFirstNationandtribal
lands.Outsideoftheselands,workwithprivatelandownersandwithenvironmentalpolicyto
maintaincontiguousswathsofsuitablelandthatwillfacilitatemovement.
Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project
5
Shrub-steppe
•
Consideringtheestablishmentofadditionalconservationareasatelevationsabovethecurrent
shrub-steppesystem,inordertoaccommodateupwardrangeexpansionsofshrub-steppe
species.
•
Increasingthenumberofshrub-steppeprotectedareas,whichcouldincreasetheresilienceand
permeabilityoftheoverallconservationnetwork.
•
Consideringthefullrangeoflandprotectionandmanagementapproachesforhabitat
connectivityconservation,fromlandpurchasesandeasementstostewardshipactivities.
•
Coordinatingstewardshipandmanagementactivitieswithprovincialandlocalgovernments,
NGOs,FirstNationsandtribes,andespeciallywithprivatelandowners.
•
Incorporatingtheseadaptationactionsintothemanagementofconservationareas,working
witharangeofgovernment,NGO,FirstNation,tribal,andprivatelandownerpartnersto
anticipateandrespondtoclimateimpactsonshrub-steppehabitatconnectivity.
Research needs
Futureresearchthatcouldhelpinformshrub-steppeconnectivityconservationunderclimatechange
includes:
•
Developingclimaticnichemodelsforadditionalshrub-steppeplantspecies.Thiswouldallow
morethoroughunderstandingofpotentialimpactsonshrub-steppehabitatconnectivity.
•
Developinghabitatconnectivitymodelsthatincorporateprojectedchangesindevelopment
withinshrub-steppehabitats,includinghumanresponsetoclimatechange.Thiswouldimprove
theabilitytoanticipatefuturethreatstoshrub-steppehabitatconnectivity.
•
Evaluatingtheextenttowhichsoilconditionsandotherecologicalfactorscouldsupportshrubsteppevegetationinareasprojectedtobecomeclimaticallysuitable,tobetteranticipateand
planforfutureareasofexpansion.
•
Identifyingclimateresilientshrub-steppecorehabitatareasandcorridors.Overlayavailable
corridornetworks(AppendixL.1)7withprojectedchangesinvegetation(AppendixL.3,Appendix
L.4)andclimatevariables(AppendixL.5).Coreareasandcorridorsthatareprojectedbymultiple
modelstoretainsuitableclimaticconditionsandvegetation,andtoseetheleastchangein
relevantclimaticvariables,maybemostlikelytocontinuesupportingshrub-steppehabitatand
connectivityinthefuture.Theseclimate-resilienthabitatareasmaybeusedaspriorityareasfor
theadaptationactionsdescribedabove.212223242526
References
1.Krosby,M.,Michalak,J.,Robbins,T.O.,Morgan,H.,Norheim,R.,Mauger,G.,andT.Murdock.2016.
TheWashington-BritishColumbiaTransboundaryClimate-ConnectivityProject:Identifyingclimate
impactsandadaptationactionsforwildlifehabitatconnectivityinthetransboundaryregionof
WashingtonandBritishColumbia.ClimateImpactsGroup,UniversityofWashington.
2.Michalak,J.L.,J.C.Whitey,J.J.Lawler,S.Hall,andT.Nogeire.2014.Climatevulnerabilityand
adaptationintheColumbiaPlateau,WA.ReportpreparedfortheGreatNorthernLandscape
ConservationCooperative.SchoolofEnvironmentalandForestSciences,UniversityofWashington,
Seattle,WA.
3.Krosby,M.,Tewksbury,J.J.,Haddad,N.,andJ.Hoekstra.2010.Ecologicalconnectivityforachanging
climate.ConservationBiology24:1686-1689.
Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project
6
Shrub-steppe
4.Cross,M.S.,Hilty,J.A.,Tabor,G.M.,Lawler,J.J.,Graumlich,L.J.,andJ.Berger.2012.Fromconnectthe-dotstodynamicnetworks:Maintainingandrestoringconnectivityasastrategytoaddressclimate
changeimpactsonwildlife.In:J.Brodie,E.Post,D.Doak,eds.Conservingwildlifepopulationsina
changingclimate.ChicagoUniversityPress.
5.Heller,N.E.,andE.S.Zavaleta.2009.Biodiversitymanagementinthefaceofclimatechange:areview
of22yearsofrecommendations.BiologicalConservation142:14–32.
6.Cross,M.S.,etal.2012.TheAdaptationforConservationTargets(ACT)framework:atoolfor
incorporatingclimatechangeintonaturalresourcemanagement.EnvironmentalManagement
50:341–351.
7.WashingtonWildlifeHabitatConnectivityWorkingGroup.2010.WashingtonConnectedLandscapes
Project:StatewideAnalysis.WashingtonDepartmentsofFishandWildlife,andTransportation,
Olympia,WA.www.waconnected.org.
8.WashingtonWildlifeHabitatConnectivityWorkingGroup.2011.WashingtonConnectedLandscapes
Project:Climategradientcorridorsreport.WashingtonDepartmentsofFishandWildlife,and
Transportation.Olympia,WA.www.waconnected.org.
9.IntegratedScenariosoftheFutureNorthwestEnvironment.
http://climate.nkn.uidaho.edu/IntegratedScenarios
10.PacificClimateImpactsConsortium(PCIC),RegionalAnalysisTool.2014.
https://www.pacificclimate.org/analysis-tools/regional-analysis-tool
11.PacificNorthwestClimateChangeVulnerabilityAssessment(PNWCCVA).
http://www.climatevulnerability.org/
12.Shafer,S.L.,Bartlein,P.J,Gray,E.M.,andR.T.Pelltier.2015.Projectedfuturevegetationchangesfor
thenorthwestUnitedStatesandsouthwestCanadaatafinespatialresolutionusingadynamic
globalvegetationmodel.PLoSONE10:e0138759.doi:10.1371/journal.pone.0138759
13.Heyerdahl,E.K.,R.F.Miller,R.A.Parsons.2006.HistoryoffireandDougals-firestablishmentina
savannaandsagebrush-grasslandmosaic,southwesternMontana,USA.ForestEcologyand
Management,230,107-118.
14.Tirmenstein,D.1999.Artemisiatridentatasubsp.tridentata.In:FireEffectsInformationSystem,
[Online].U.S.DepartmentofAgriculture,ForestService,RockyMountainResearchStation,Fire
SciencesLaboratory(Producer).Available:
http://www.fs.fed.us/database/feis/plants/shrub/arttrit/all.html.
15.Bradley,B.A.2009.Regionalanalysisoftheimpactsofclimatechangeoncheatgrassinvasionshows
potentialriskandopportunity.GlobalChangeBiology15:196-208.
16.Hannah,L.,Roehrdanz,P.R.,Ikegami,M.,Shepard,A.V.,Shaw,M.R.,Tabor,G.,Zhi,L.,Marquet,P.A.,
andHijmans,R.J.2013.Climatechange,wine,andconservation.Proc.Natl.Acad.Sci.110:6907–
6912.
17.BritishColumbiaWineInstitute.2011.2011B.C.WinegrapeAcreageReport(BritishColumbiaWine
Institute,Kelowna,BC,Canada).
18.Altman,B.,Holmes,A.,andFlight,O.-W.P.in(2000).Conservationstrategyforlandbirdsinthe
ColumbiaPlateauofEasternOregonandWashington.
19.USFS.FieldguideformanagingcheatgrassintheSouthwest.2014.TP-R3-16-04.
Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project
7
Shrub-steppe
20.TransboundaryConnectivityGroup.2016.ProvidingaRegionalConnectivityPerspectivetoLocal
ConnectivityConservationDecisionsintheBritishColumbia–WashingtonTransboundaryRegion:
Okanagan-KettleSubregionConnectivityAssessment.www.waconnected.org.
21.(IPCC)IntergovernmentalPanelonClimateChange.2007.WorkingGroup1,Summaryfor
Policymakers.Availableat:http://ipcc.ch/publications_and_data/ar4/wg1/en/contents.html
22.Meehl,G.A.,Covey,C.,Delworth,T.,Latif,M.,McAvaney,B.,Mitchell,J.F.B.,Stouffer,R.J.,andK.E.
Taylor.2007:TheWCRPCMIP3multi-modeldataset:Anewerainclimatechangeresearch.Bulletin
oftheAmericanMeteorologicalSociety88:1383-1394.
23.Nakicenovic,N.etal.2000.SpecialReportonEmissionsScenarios:ASpecialReportofWorking
GroupIIIoftheIntergovernmentalPanelonClimateChange,CambridgeUniversityPress,
Cambridge,U.K.,599pp.Availableonlineat:http://www.grida.no/climate/ipcc/emission/index.htm
24.(IPCC)IntergovernmentalPanelonClimateChange.2013.WorkingGroup1,Summaryfor
Policymakers.Availableat:http://www.climatechange2013.org/images/uploads/WGIAR5SPM_Approved27Sep2013.pdf
25.Taylor,K.E.etal.2012.AnoverviewofCMIP5andtheexperimentdesign.BulletinoftheAmerican
MeteorologicalSociety93:485-498.doi:10.1175/BAMS-D-11-00094.1
26.VanVuuren,D.P.etal.2011.Therepresentativeconcentrationpathways:Anoverview.Climatic
Change109:5-31.
Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project
8
Shrub-steppe
Glossary of Terms
Assistedmigration–Speciesandpopulationsaredeliberatelyplantedortransportedtonewsuitable
habitatlocations,typicallyinresponsetodeclinesinhistorichabitatqualityresultingfromrapid
environmentalchange,principallyclimatechange.
Centrality—Referstoagroupoflandscapemetricsthatranktheimportanceofhabitatpatchesor
linkagesinprovidingmovementacrossanentirenetwork,i.e.,as“gatekeepers”offlowacrossa
landscape.viii
Connectivity—Mostcommonlydefinedasthedegreetowhichthelandscapefacilitatesorimpedes
movementamongresourcepatches.ixCanbeimportantformaintainingecological,population-level,or
evolutionaryprocesses.
CoreAreas—Largeblocks(10,000+acres)ofcontiguouslandswithrelativelyhighlandscape
permeability.
Corridor—Referstomodeledmovementroutesorphysicallinearfeaturesonthelandscape(e.g.,
continuousstripsofriparianvegetationortransportationroutes).Inthisdocument,theterm“corridor”
ismostoftenusedinthecontextofmodeledleast-costcorridors,i.e.,themostefficientmovement
pathwaysforwildlifeandecologicalprocessesthatconnectHCAsorcoreareas.Theseareareas
predictedtobeimportantformigration,dispersal,orgeneflow,orforshiftingrangesinresponseto
climatechangeandotherfactorsaffectingthedistributionofhabitat.
Desiccation–Extremewaterdeprivation,orprocessofextremedrying.
Dispersal—Relativelypermanentmovementofanindividualfromanarea,suchasmovementofa
juvenileawayfromitsplaceofbirth.
FractureZone—Anareaofreducedpermeabilitybetweencoreareas.Mostfracturezonesneed
significantrestorationtofunctionasreliablelinkages.Portionsofafracturezonemaybepotential
linkagezones.
HabitatConnectivity—SeeConnectivity.
LandscapeConnectivity—SeeConnectivity.
Permeability—Theabilityofalandscapetosupportmovementofplants,animals,orprocesses.
viii
Carroll,C.2010.Connectivityanalysistoolkitusermanual.Version1.1.KlamathCenterforConservation
Research,Orleans,California.Availableatwww.connectivitytools.org(accessedJanuary2016).
ix
Taylor,P.D.,L.Fahrig,K.Henein,andG.Merriam.1993.Connectivityisavitalelementoflandscapestructure.
Oikos68:571-573.
Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project
9
Shrub-steppe
Pinchpoint—Portionofthelandscapewheremovementisfunneledthroughanarrowarea.Pinch
pointscanmakelinkagesvulnerabletofurtherhabitatlossbecausethelossofasmallareacanseverthe
linkageentirely.Synonymsarebottleneckandchokepoint.
Refugia–Geographicalareaswhereapopulationcansurvivethroughperiodsofunfavorable
environmentalconditions(e.g.,climate-relatedeffects).
Thermalbarriers–Watertemperatureswarmenoughtopreventmigrationofagivenfishspecies.
Thesebarrierscanpreventordelayspawningformigratingsalmonids. Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project
10
Shrub-steppe
Appendices L.1-5
Appendicesincludeallmaterialsusedtoidentifypotentialclimateimpactsonhabitatconnectivityfor
casestudyspecies,vegetationsystems,andregions.Forshrub-steppe,thesematerialsinclude:
AppendixL.1.Habitatconnectivitymodels
AppendixL.2.Conceptualmodelofhabitatconnectivity
AppendixL.3.Climaticnichemodels
AppendixL.4.Projectedchangesinvegetationcommunities
AppendixL.5.Projectedchangesinrelevantclimaticvariables
Allmapsincludedintheseappendicesarederivedfromafewprimarydatasets,chosenbecausethey
arefreelyavailable,spanallorpartofthetransboundaryregion,andreflecttheexpertiseofproject
sciencepartners.ThesesourcesincludehabitatconnectivitymodelsproducedbytheWashington
ConnectedLandscapesProject,7,8futureclimateprojectionsfromtheIntegratedScenariosofthePacific
NorthwestEnvironment9andthePacificClimateImpactsConsortium’sRegionalAnalysisTool,10and
modelsofprojectedrangeshiftsandvegetationchangeproducedaspartofthePacificNorthwest
ClimateChangeVulnerabilityAssessment.11
Allmapsareprovidedatthreegeographicextentscorrespondingtothedistinctgeographiesofthethree
projectpartnerships(Fig.L.2):
i.
OkanaganNationTerritory,theassessmentareaforprojectpartners:OkanaganNationAlliance
anditsmemberbandsandtribes,includingColvilleConfederatedTribes.
ii.
TheOkanagan-KettleRegion,theassessmentareaforprojectpartners:Transboundary
ConnectivityWorkingGroup(i.e.,theWashingtonHabitatConnectivityWorkingGroupandits
BCpartners).
iii.
TheWashington-BritishColumbiaTransboundaryRegion,theassessmentareaforproject
partners:BCParks;BCForests,Lands,andNaturalResourceOperations;USForestService;and
USNationalParkService.
Allprojectreports,datalayers,andassociatedmetadataarefreelyavailableonlineat:
https://nplcc.databasin.org/galleries/5a3a424b36ba4b63b10b8170ea0c915e
Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project
11
Shrub-steppe
FigureL.2.Projectpartnersandassessmentareas.
Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project
12
Shrub-steppe
Appendix L.1. Habitat Connectivity Models
HabitatconnectivitymodelsareavailablefromtheWashingtonConnectedLandscapesProject.xThese
modelscanbeusedtoprioritizeareasformaintainingandrestoringhabitatconnectivitynowandinthe
futureastheclimatechanges.Availablemodelsincludespeciescorridornetworks,landscapeintegrity
corridornetworks,andclimate-gradientcorridornetworks.Thesemodelsareavailableattwodistinct
scales(thoughformanyspecies,onlyonescaleisavailableorwasselectedforusebyproject
participants):1)WHCWGStatewidemodelsspanWashingtonStateandsurroundingareasofOregon,
Idaho,andBritishColumbia;2)WHCWGColumbiaPlateaumodelsspantheColumbiaPlateauecoregion
withinWashingtonState,anddonotextendintoBritishColumbia;3)TransboundaryWorkingGroup
Okanagan-KettlemodelsspantheOkanagan-Kettleregion.
a) WHCWGStatewideAnalysis:LandscapeIntegrityCorridorNetwork.7 Thismapshowscorridor
networksconnectingcorehabitatareas(greenpolygons)forareasofhighlandscapeintegrity(e.g.,
areaswithfewroads,agriculturalareas,orurbanareas).Corridorsarerepresentedasyellowareas,
withresistancetomovementincreasingasyellowtransitionstoblue.Greenareasrepresentlarge,
contiguouscoreareasofhighlandscapeintegrity.Thenorthernextentofthisanalysisfallsjustnorth
ofKamloops,BC.
b) WHCWGStatewideAnalysis:Climate-GradientCorridorNetwork(Temperature+Landscape
Integrity).8Thismapshowscorridors(glowingwhiteareas,withresistancetomovementincreasing
aswhitefadestoblack)connectingcorehabitatareas(polygons,shadedtoreflectmeanannual
temperatures)thatareofhighlandscapeintegrity(i.e.,havelowlevelsofhumanmodification)and
differintemperatureby>1oC.Thesecorridorsthusallowformovementbetweenrelativelywarmer
andcoolercorehabitatareas,whileavoidingareasoflowlandscapeintegrity(e.g.,roads,
agriculturalareas,urbanareas),andminimizingmajorchangesintemperaturealongtheway(e.g.,
crossingovercoldpeaksordippingintowarmvalleys).Thenorthernextentofthisanalysisfallsjust
northofKamloops,BC.
c) Okanagan-KettleConnectivityAssessment:ConnectivityFocusAreas.20Thismapshows
connectivityfocusareas(CFAs)identifiedfortheOkanagan-Kettleregion.CFAs(inpurple)used
connectivityvalueanddevelopmentriskmodelstoidentifythoseplaceswithintheOkanagan-Kettle
regionwherewildlifewouldlikelymovewhenmigratingormakingdispersalmovementsandthat
arealsothemostthreatenedbypotentialdevelopment.ThismapshowsacompositeofCFAsfor
shrub-steppespecies,montanespecies,andlandscapeintegritymodels;CFAsmovefrompinkto
purplewithincreasingnumberofoverlappingmodels.
x
Fordetailedmethodologyanddatalayersseehttp://www.waconnected.org.
Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project
13
Shrub-steppe
AppendixL.1a.WHCWGStatewideAnalysis:LandscapeIntegrityCorridorNetwork
i)Extent:OkanaganNationTerritory
Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project
14
Shrub-steppe
AppendixL.1a.WHCWGStatewideAnalysis:LandscapeIntegrityCorridorNetwork
ii)Extent:Okanagan-KettleRegion
Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project
15
Shrub-steppe
AppendixL.1a.WHCWGStatewideAnalysis:LandscapeIntegrityCorridorNetwork
iii)Extent:Washington-BritishColumbiaTransboundaryRegion
Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project
16
Shrub-steppe
AppendixL.1b.WHCWGStatewideAnalysis:Climate-GradientCorridorNetwork(Temperature+
LandscapeIntegrity)
i)Extent:OkanaganNationTerritory
Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project
17
Shrub-steppe
AppendixL.1b.WHCWGStatewideAnalysis:Climate-GradientCorridorNetwork(Temperature+
LandscapeIntegrity)
ii)Extent:Okanagan-KettleRegion
Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project
18
Shrub-steppe
AppendixL.1b.WHCWGStatewideAnalysis:Climate-GradientCorridorNetwork(Temperature+
LandscapeIntegrity)
iii)Extent:Washington-BritishColumbiaTransboundaryRegion
Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project
19
Shrub-steppe
AppendixL.1c.Okanagan-KettleConnectivityAssessment:ConnectivityFocusAreas
Extent:Okanagan-KettleRegion
Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project
20
Shrub-steppe
Appendix L.2. Conceptual Model of Habitat Connectivity
Toidentifypotentialclimateimpactsontransboundaryshrub-steppehabitatconnectivity,project
partnerscreatedaconceptualmodelthatidentifiesthekeylandscapefeaturesandprocessesexpected
toinfluenceshrub-steppehabitatconnectivity,whichofthoseareexpectedtobeinfluencedbyclimate,
andhow.Simplifyingcomplexecologicalsystemsinsuchawaycanmakeiteasiertoidentifyspecific
climateimpactsandadaptationactions.Forthisreason,conceptualmodelshavebeenpromotedas
usefuladaptationtools,andhavebeenappliedinavarietyofothersystems.6Theshrub-steppe
conceptualmodelwasdevelopedusingpeer-reviewedarticlesandreports,projectparticipantexpertise,
andreviewbyspeciesexperts.Thatsaid,theresultingmodelisintentionallysimplified,andshouldnot
beinterpretedtorepresentacomprehensiveassessmentofthefullsuiteoflandscapefeaturesand
processescontributingtoShrub-steppehabitatconnectivity.
Conceptualmodelsillustratetherelationshipsbetweenthekeylandscapefeatures(whiteboxes),
ecologicalprocesses(roundedcornerpurpleboxes),andhumanactivities(roundedcornerblueboxes)
thatinfluencethequalityandpermeabilityofcorehabitatanddispersalhabitatforagivenspecies.
Climaticvariablesforwhichdataonprojectedchangesareavailablearehighlightedwithayellow
outline.Greenarrowsindicateapositivecorrelationbetweenlinkedvariables(i.e.,asvariablex
increasesvariableyincreases);notethatapositivecorrelationisnotnecessarilybeneficialtothe
species.Redarrowsindicateanegativerelationshipbetweenvariables(i.e.,asvariablexincreases,
variableydecreases);again,negativecorrelationsarenotnecessarilyharmfultothespecies.
Expertreviewersfortheshrub-steppeconceptualmodelincluded:
•
CarmenCadrin,BritishColumbiaConservationDataCentre.
•
AlisonPeatt,RPBio,EnvironmentalplannerforSouthOkanagan-Similkameencommunities
•
KirkSafford,BCMinistryofEnvironment
Keyreferencesusedtocreatetheshrub-steppeconceptualmodelincluded:
Bradley,B.A.2009.Regionalanalysisoftheimpactsofclimatechangeoncheatgrassinvasionshows
potentialriskandopportunity.GlobalChangeBiology15:196–208.
Case,M.,andLawler,J.J.2012.Unpublishedclimaticnichemodeldatafortreespeciesandvegetation
systems.UniversityofWashington,Seattle,WA.
D’Antonio,C.M.,andVitousek,P.M.1992.Biologicalinvasionsbyexoticgrasses,thegrass/firecycle,and
globalchange.AnnualReviewofEcologyandSystematics23:63–87.
Daubenmire,R.1970.SteppevegetationofWashington.TechnicalBulletin.WashingtonAgricultural
ExperimentStation.
Diamond,J.M.,Call,C.A.,andDevoe,N.2009.Effectsoftargetedcattlegrazingonfirebehaviorof
cheatgrass-dominatedrangelandinthenorthernGreatBasin,USA.Int.J.WildlandFire18:944–950.
Giblin2012.ArtemisiatridentatainCCSD(ClimateChangeSensitivityDatabase):Acollaborationofthe
UniversityofWashington,TheNaturalConservancy,andstateandfederalresourceagenciesinthe
PacificNorthwest.Availableonline:www.climatechangesensitivity.org.AccessedAugust,2013.
Harte,J.,andShaw,R.1995.ShiftingDominancewithinaMontaneVegetationCommunity:Resultsofa
Climate-WarmingExperiment.Science267:876–880.
Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project
21
Shrub-steppe
Heyerdahl,E.K.,Miller,R.F.,andParsons,R.A.2006.HistoryoffireandDouglas-firestablishmentina
savannaandsagebrush–grasslandmosaic,southwesternMontana,USA.ForestEcologyand
Management230:107–118.
Knapp,P.A.1996.Cheatgrass(BromustectorumL)dominanceintheGreatBasinDesert:History,
persistence,andinfluencestohumanactivities.GlobalEnvironmentalChange6:37–52.
Kolb,K.J.,andSperry,J.S.1999.Differencesindroughtadaptationbetweensubspeciesofsagebrush
(Artemisiatridentata).Ecology80:2373–2384.
Loik,M.E.2007.Sensitivityofwaterrelationsandphotosynthesistosummerprecipitationpulsesfor
ArtemisiatridentataandPurshiatridentata.PlantEcology191:95–108.
McArthur,E.D.,Freeman,D.C.,Graham,J.H.,Wang,H.,Sanderson,S.C.,Monaco,T.A.,andSmith,B.N.
1998.Narrowhybridzonebetweentwosubspeciesofbigsagebrush(Artemisiatridentata:Asteraceae).
VI.Respirationandwaterpotential.CanadianJournalofBotany76:567–574.
Melgoza,G.,Nowak,R.S.,andTausch,R.J.1990.SoilWaterExploitationafterFire:Competitionbetween
Bromustectorum(Cheatgrass)andTwoNativeSpecies.Oecologia83:7–13.
Perfors,T.,Harte,J.,andAlter,S.E.2003.Enhancedgrowthofsagebrush(Artemisiatridentata)in
responsetomanipulatedecosystemwarming.GlobalChangeBiology9:736–742.
Tirmenstein,D.1999.Artemisiatridentataspp.tridentata.In:FireEffectsInformationSystem,[Online].
U.S.DepartmentofAgriculture,ForestService,RockyMountainResearchStation,FireSciences
Laboratory(Producer).Available:http://www.fs.fed.us/database/feis/[2013,August28].
VanderHaegen,W.M.,Dobler,F.C.,andPierce,D.J.2000.ShrubsteppeBirdResponsetoHabitatand
LandscapeVariablesinEasternWashington,U.S.A.ConservationBiology14:1145–1160.
Ziska,L.H.,Reeves,J.B.,andBlank,B.2005.TheimpactofrecentincreasesinatmosphericCO2on
biomassproductionandvegetativeretentionofCheatgrass(Bromustectorum):implicationsforfire
disturbance.GlobalChangeBiology11:1325–1332.
Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project
22
Shrub-steppe
AppendixL.2.ConceptualModelofShrub-SteppeConnectivity
Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project
23
Shrub-steppe
Appendix L.3. Climatic Niche Models
Climaticnichemodels(CNM)mathematicallydefinetheclimaticconditionswithineachspecies’current
geographicdistribution,andthenapplyprojectedclimatechangestoidentifywhereonthelandscape
thoseclimateconditionsareprojectedtobelocatedinthefuture.ThesemapsshowCNMresultsbased
onresultsfromtwoCMIP3GlobalCirculationModels(GCMs):CGCM3.1(T47)andUKMO-HadCM3.xi
BothmodelsusetheA2(high)emissionsscenario.xiiCNMsarebasedonclimateconditionsaloneanddo
notaccountfordispersalability,geneticadaptation,interspeciesinteractions,orotheraspectsof
habitatsuitability.Onceprojectedrangeshiftsweremodeled,currentlandusesandprojected
vegetationtypes(identifiedusingShaferetal.2015xiii)thatareunlikelytosupportspeciesoccurrence
wereremoved.Forexample,areascurrentlydefinedasurbanwereremovedforspeciesunabletolivein
urbanlandscapes,andgrasslandhabitatswereremovedforforest-dependentspecies.Bothwouldbe
shownasunsuitable.
Darkgrayareasindicateareasofthespecies’currentrangethatareprojectedtoremainclimatically
suitablebybothGCMs(i.e.,rangeisexpectedtoremain“stable”).Darkpinkareasareprojectedto
becomelessclimaticallysuitablebybothGCMs(i.e.,rangeisexpectedto“contract”).Lightpinkareas
areprojectedtobecomelesssuitableunderonemodelbutremainstableundertheother.Darkgreen
areasareareasthatarenotwithinthespecies’currentrangebutareprojectedtobecomeclimatically
suitablebybothGCMs(i.e.,therangeisexpectedto“expand”).Lightgreenareasareprojectedto
becomeclimaticallysuitablebyoneGCM,butnottheother.
xi
21,22
CGCM3.1(T47)andUKMO-HadCM3aretwoGlobalCirculationModels(GCMs)
whicheachprojectdifferent
potentialfutureclimatescenarios.TheUKMO-HadCM3modelprojectsamuchhotteranddriersummer,whilethe
CGCM3.1(T47)projectsgreaterprecipitationincreasesinspring,summerandfall.Forthesereasons,theUKMOHadCM3couldbeconsidereda“hot-dry”future,whiletheCGCM3.1(T47)couldbeconsidereda“warm-wet”
futurewithinthePacificNorthwest.
xii
Emissionsscenariosweredevelopedbyclimatemodelingcentersforuseinmodelingglobalandregional
climate-relatedeffects.A2isahigh,“businessasusual”scenarioinwhichemissionsofgreenhousegasescontinue
st
toriseuntiltheendofthe21 century,andatmosphericCO2concentrationsmorethantripleby2100relativeto
23
pre-industriallevels. xiii
Shafer,S.L.,Bartlein,P.J,Gray,E.M.,andR.T.Pelltier.2015.Projectedfuturevegetationchangesforthe
northwestUnitedStatesandsouthwestCanadaatafinespatialresolutionusingadynamicglobalvegetation
model.PLoSONE10:e0138759.doi:10.1371/journal.pone.0138759
Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project
24
Shrub-steppe
AppendixL.3.Shrub-SteppeClimaticNicheModel
i)Extent:OkanaganNationTerritory
Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project
25
Shrub-steppe
AppendixL.3.Shrub-SteppeClimaticNicheModel
ii)Extent:Okanagan-KettleRegion
Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project
26
Shrub-steppe
AppendixL.3.Shrub-SteppeClimaticNicheModel
iii)Extent:Washington-BritishColumbiaTransboundaryRegion
Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project
27
Shrub-steppe
Appendix L.4. Projected Changes in Vegetation
Twotypesofmodelsareavailablethatprojectfuturechangesinvegetationthatcouldaffectaspecies’
habitatconnectivity:climaticnichemodelsandmechanisticmodels.Climaticnichevegetationmodels
mathematicallydefinetheclimaticconditionswithinagivenvegetationtype’scurrentdistributionand
thenprojectwhereonthelandscapethoseconditionsareexpectedtooccurinthefuture.Thesemodels
donotincorporateotherimportantfactorsthatdeterminevegetationsuchassoilsuitability,dispersal,
competition,andfire.Incontrast,mechanisticvegetationmodelsdoincorporatetheseecological
processes,aswellasprojectedclimatechangesandthepotentialeffectsofcarbondioxidefertilization.
However,mechanisticmodelsonlyprojectchangestoverygeneralvegetationtypes(e.g.,coldforest,
shrubsteppe,orgrassland).Bothtypesofmodelsincludedbelowshowvegetationmodelresultsbased
onresultsfromtwoCMIP3GlobalCirculationModels(GCMs):CGCM3.1(T47)andUKMO-HadCM3.xiv
BothmodelsalsousetheA2(high)emissionsscenario.xv
a) BiomeClimaticNicheVegetationModel.xviThisclimaticnichevegetationmodelshowsthe
projectedresponseofbiomesorforesttypestoprojectedclimatechange.
b) MechanisticVegetationModel.xviiThismechanisticvegetationmodelshowssimulated
vegetationcompositionanddistributionpatternsunderclimatechange.
xiv
21,22
CGCM3.1(T47)andUKMO-HadCM3aretwoGlobalCirculationModels(GCMs)
whicheachprojectdifferent
potentialfutureclimatescenarios.TheUKMO-HadCM3modelprojectsamuchhotteranddriersummer,whilethe
CGCM3.1(T47)projectsgreaterprecipitationincreasesinspring,summerandfall.Forthesereasons,theUKMOHadCM3couldbeconsidereda“hot-dry”future,whiletheCGCM3.1(T47)couldbeconsidereda“warm-wet”
futurewithinthePacificNorthwest.
xv
Emissionsscenariosweredevelopedbyclimatemodelingcentersforuseinmodelingglobalandregional
climate-relatedeffects.A2isahigh,“businessasusual”scenarioinwhichemissionsofgreenhousegasescontinue
st
toriseuntiltheendofthe21 century,andatmosphericCO2concentrationsmorethantripleby2100relativeto
23
pre-industriallevels. xvi
Rehfeldt,G.E.,Crookston,N.L.,Sánez-Romero,C.,Campbell,E.M.2012.NorthAmericanvegetationmodelfor
land-useplanninginachangingclimate:asolutiontolargeclassificationproblems.EcologicalApplications22:119141.
xvii
Shafer,S.L.,Bartlein,P.J,Gray,E.M.,andR.T.Pelltier.2015.Projectedfuturevegetationchangesforthe
NorthwestUnitedStatesandSouthwestCanadaatafinespatialresolutionusingadynamicglobalvegetation
model.PLoSONE10:e0138759.doi:10.1371/journal.pone.0138759.
Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project
28
Shrub-steppe
AppendixL.4a.BiomeClimaticNicheModel
i)Extent:OkanaganNationTerritory
Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project
29
Shrub-steppe
AppendixL.4a.BiomeClimaticNicheModel
ii)Extent:Okanagan-KettleRegion
Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project
30
Shrub-steppe
AppendixL.4a.BiomeClimaticNicheModel
iii)Extent:Washington-BritishColumbiaTransboundaryRegion
Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project
31
Shrub-steppe
AppendixL.4b.MechanisticVegetationModel
i)Extent:OkanaganNationTerritory
Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project
32
Shrub-steppe
AppendixL.4b.MechanisticVegetationModel
ii)Extent:Okanagan-KettleRegion
Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project
33
Shrub-steppe
AppendixL.4b.MechanisticVegetationModel
iii)Extent:Washington-BritishColumbiaTransboundaryRegion
Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project
34
Shrub-steppe
Appendix L.5. Projected Changes in Relevant Climate Variables
Thefollowingprojectionsoffutureclimatewereidentifiedbyprojectpartnersasbeingmostrelevantto
understandingandaddressingclimateimpactsonshrub-steppeconnectivity.xviiiFutureclimate
projectionsweregatheredfromtwosources,exceptwhereotherwisenoted:1)theIntegratedScenarios
ofthePacificNorthwestEnvironment,9whichislimitedtotheextentoftheColumbiaBasin;andthe
PacificClimateImpactsConsortium’sRegionalAnalysisTool,10whichspansthefulltransboundary
region.Formanyclimaticvariables,noticeabledifferencesinthemagnitudeoffuturechangescanbe
seenattheUS-Canadaborder;thisartifactresultsfromdifferencesoneithersideoftheborderinthe
numberofweatherstations,thewaytemperatureandprecipitationweremeasured,anddifferencesin
theapproachusedtoprocessthesedatatoproducegriddedestimatesofdailyweathervariations.
a) DayswithHighFireRisk(EnergyReleaseComponent,ERC>95thpercentile).xixThismapshows
theprojectedchangeinthenumberofdayswhentheERC–acommonlyusedmetrictoproject
thepotentialandriskofwildfire–isgreaterthanthehistorical95thpercentileamongalldaily
values.
b) Spring(April1st)Snowpack.Thismapsnowsthepercentchangeinsnowwaterequivalent
(SWE)onApril1st.April1stistheapproximatecurrenttimingofpeakannualsnowpackin
Northwestmountains.SWEisameasureofthetotalamountofwatercontainedinthe
snowpack.ProjecteddecreasesinSWEaredepictedbytheyellowtoredshading.
c) TotalSpringPrecipitation,March-May.Thismapshowstheprojectedchange,inpercent,in
totalspring(March-May)precipitation.Projectedchangesintotalspringprecipitationare
depictedbytheyellowtogreenshading.
d) SoilMoisture,July-September.Thismapshowstheprojectedchange,inpercent,insummer
soilmoisture.Projectedchangesinsoilmoisturearedepictedbythebrowntogreenshading.
e) DrySpellDuration.Thismapshowstheprojectedchange,inpercent,inthemaximumnumber
ofconsecutivedayswithlessthan1mmofprecipitation.Projectedchangeindryspellduration
isdepictedbythebrowntogreenshading.
f) NumberofFrostDays.Thismapshowstheprojectedchange,inpercent,inthenumberoffrost
days,definedastheannualcountofdayswhenthedailyminimumtemperatureislessthan0
degreesCelsius.Projectedchangesinthenumberoffrostdaysaredepictedbytheyellowtored
shading.
xviii
Allprojectionsbut“DayswithHighFireRisk”areevaluatedforthe2050s(2040-2069)andthe2080s(207024,25
2099),basedon3globalclimatemodels(ahigh(CanESM2),median(CNRM-CM5),andlow(CCSM4)),
undera
26
highgreenhousegasscenario(RCP8.5). DayswithHighFireRisk’isevaluatedforthe2050s,basedon3global
24,25
climatemodels(ahigh(CanESM2),median(CNRM-CM5),andlow(MIROC5))
usingtheRCP8.5(high)emissions
26
scenario. xix
Abatzoglou,J.T.2013.Developmentofgriddedsurfacemeteorologicaldataforecologicalapplicationsand
modeling.InternationalJournalofClimatology33:121-131.
Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project
35
Shrub-steppe
AppendixL.5a.DayswithHighFireRisk
i)Extent:OkanaganNationTerritory
Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project
36
Shrub-steppe
AppendixL.5a.DayswithHighFireRisk
ii)Extent:Okanagan-KettleRegion
Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project
37
Shrub-steppe
AppendixL.5a.DayswithHighFireRisk
iii)Extent:Washington-BritishColumbiaTransboundaryRegion
Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project
38
Shrub-steppe
AppendixL.5b.Spring(April1st)Snowpack
i)Extent:OkanaganNationTerritory
Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project
39
Shrub-steppe
AppendixL.5b.Spring(April1st)Snowpack
ii)Extent:Okanagan-KettleRegion
Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project
40
Shrub-steppe
AppendixL.5b.Spring(April1st)Snowpack
iii)Extent:Washington-BritishColumbiaTransboundaryRegion
Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project
41
Shrub-steppe
AppendixL.5c.TotalSpringPrecipitation,March-May
i)Extent:OkanaganNationTerritory
Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project
42
Shrub-steppe
AppendixL.5c.TotalSpringPrecipitation,March-May
ii)Extent:Okanagan-KettleRegion
Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project
43
Shrub-steppe
AppendixL.5c.TotalSpringPrecipitation,March-May
iii)Extent:Washington-BritishColumbiaTransboundaryRegion
Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project
44
Shrub-steppe
AppendixL.5d.SummerSoilMoisture,July-September
i)Extent:OkanaganNationTerritory
Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project
45
Shrub-steppe
AppendixL.5d.SoilMoisture,July-September
ii)Extent:Okanagan-KettleRegion
Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project
46
Shrub-steppe
AppendixL.5d.SoilMoisture,July-September
iii)Extent:Washington-BritishColumbiaTransboundaryRegion
Washington-BritishColumbiaTransboundaryClimate-ConnectivityProject
47
Shrub-steppe
AppendixL.5e.DrySpellDuration
i)Extent:OkanaganNationTerritory
Washington-BritishColumbiaTransboundaryClimate-ConnectivityProject
48
Shrub-steppe
AppendixL.5e.DrySpellDuration
ii)Extent:Okanagan-KettleRegion
Washington-BritishColumbiaTransboundaryClimate-ConnectivityProject
49
Shrub-steppe
AppendixL.5e.DrySpellDuration
iii)Extent:Washington-BritishColumbiaTransboundaryRegion
Washington-BritishColumbiaTransboundaryClimate-ConnectivityProject
50
Shrub-steppe
AppendixL.5f.NumberofFrostDays
i)Extent:OkanaganNationTerritory
Washington-BritishColumbiaTransboundaryClimate-ConnectivityProject
51
Shrub-steppe
AppendixL.5f.NumberofFrostDays
ii)Extent:Okanagan-KettleRegion
Washington-BritishColumbiaTransboundaryClimate-ConnectivityProject
52
Shrub-steppe
AppendixL.5f.NumberofFrostDays
iii)Extent:Washington-BritishColumbiaTransboundaryRegion
Washington-BritishColumbiaTransboundaryClimate-ConnectivityProject
53