* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Example: Finding values of x for trig functions - EAmagnet-alg
Survey
Document related concepts
Transcript
Trigonometry Angles and Their Measure Define: Trigonometry: Initial Side: Terminal Side: Positive Angle: Negative Angle: Standard Position: Coterminal Angles: Quadrantal Angle: Reference Angle: Angle Unit Measures: Degree (º): 360º in a circle 1 Degree = radians = 0.017 radians 180 Radian (π): 2π in circle 180 1 Radian = degrees = 57.3 degrees Examples: Conversions (D → R and R → D) 3 3 180 1. 30º = 30 * = 2. = * = 135 º 180 14 14 6 Practice: Conversions (D → R and R → D) Convert the following degrees to radians. 3. 45º = Convert the following radians to degrees. 7 4 5. = 6. = 8 3 4. 135º = Coterminal Angles: Angles differing in degree measure by multiples of 360 are equivalent. If α is degree measure of angle, then all angles of form α + 360k are coterminal with α If β is radian measure of angle, then all angles of form β + 2kπ are coterminal with β. Examples: Coterminal Angles Find 1 positive and 1 negative angle that is coterminal with the angle having the following measure: 11 a. 60º b. 4 11 3 1 positive: 60º + 360º = 420º 1 positive: - 2π = 4 4 11 3 1 negative: 60º - 360º = -300º 1 negative: - 4π = 4 4 1 Trigonometry Practice: Coterminal Angles Find 1 positive and 1 negative angle that is coterminal with the angle having the following measure: 13 c. 45º = d. = 4 Reference Angles: If α >2π or α < 0, then associated with coterminal of positive measure between 0 & 2π Reference Angle Rule: reference angle defined by o α when terminal side is in quadrant I o π – α when terminal side is in quadrant II o α - π when terminal side is in quadrant III o 2π – α when terminal side is in quadrant IV Examples: Reference Angles Find the measure of the reference angle. 5 13 1. 2. 4 3 5 13 5 α= (QIII) α= coterminal: (QIV) 4 3 3 5 5 Reference = -π= Reference = 2π – = 4 3 4 3 Practice: Reference Angles Find the measure of the reference angle. 4. 142º = 6. 5. 320º = = 4 7. 2 10 = 3 3. 510º α = 510 coterminal: 150 (QII) Reference = 180 – 150 = 30 Trigonometry Central Angles and Arcs Define: Central Angle: Arc: Formula: Length of Arc (s) rθ where r = radius and θ = radian measure r 180 where r = radius and θ = degree measure Examples: Central Angles & Arcs 1. Find the length of the arc, given r= 12 and central angle = 45º. r ( 45)(12) s= = = 24π 180 180 2. Find the central angle, given r = 9 and length of arc = 2π r 180s 180(2 ) s= θ= = = 40º 180 r (9) 3. Find the radius of the circle, given the length of arc = 6π and central angle = 45º r 180s 180(6 ) s= r= = = 24 180 (45) Practice: Central Angles & Arcs 4. Find the length of the arc, given radius = 8 and central angle = 42º 5. Find the central angle, given r = 10 and length = 5π 6. Find the radius of circle, given arc length of 25 5 and central angle = 3 3 3 Trigonometry Unit Circle Pythagorean Theorem Pythagorean theorem: a2 + b2 = c2 (for right angles) Used to find the length of a side of a right triangle when the lengths of the other 2 sides are known. Pythagorean Triples: 3-4-5 5-12-13 7-24-25 8-15-17 9-40-41 Special Right Triangles 45 √2 30 √3 1 2 45 1 60 1 Unit Circle: x2 + y2 = 1 where Center (0,0), Radius = 1 and Vertices (1,0),(-1,0),(0,1),(0,-1) Point of intersection x y o , where r = x 2 y 2 r r Examples: Finding points of intersection 1. Find the point of intersection of the unit circle and angle whose terminal sides contain a. (3,4) b. (5, -12) x = 3, y = 4 x = 5, y = -12 r = 5 (Pythagorean triple) r = 13 (Pythagorean Triple) 3 4 5 12 , , 5 5 13 13 2. Find the measure of the angle if the terminal side contains (5,-5) (5, -5) lies in Quadrant IV. Since both x and y are same value, dealing with 45-45-90 triangle 360 – 45 = 315º 3. Find the coordinates of point of intersection of unit circle and terminal ray of 210º 210 º lies in Quadrant III. Reference Angle: 210º - 180º = 30º 3 1 , Dealing with 30-60-90 triangle. 2 2 Practice: Finding points of intersection 4. Find the point of intersection of the unit circle and angle whose terminal sides contain a. (-7,-24) b. (-40, 9) 5. Find the measure of the angle if the terminal side contains (√3, -1) 6. Find the coordinates of point of intersection of unit circle and terminal ray of a. -60º b. 270º c. 45º 4 Trigonometry Circular Functions Sine/Cosine If terminal side of angle θ in standard position intersects unit circle at P(x,y) then cos θ = x and sin θ = y Example: Find sin/cos 1. Find the value of sin 90º Terminal side of 90º in standard position is positive y-axis intersecting unit circle at (0,1). y-coordinate of this pair is sin 90º. Therefore, sin 90º = 1 2. Find the value of cos π. Terminal side of angle in standard position measuring π radians is negative x-axis, which intersects unit circle at (-1,0). X-coordinate of this pair is cos π. Therefore cos π = -1 Practice: Find sin/cos 3. Find the value of cos 90º. 4. Find the value of sin π. Sine/Cosine of Angle in Standard Position For an angle in standard position with measure θ, point P(x,y) on its terminal side and r = y x o sin θ = o cos θ = r r x 2 y 2 Examples: Sin/Cos of Angle in Standard Position 5. Find values of sin and cos of angle in standard position with measure θ, point P(3,4) on its terminal side. Step 1: find r Step 2: write sin and cos ratios 5 (Pythagorean triple) or y 4 o Sin θ = = 2 2 2 2 5 r r = x y = 3 4 = 5 x 3 o Cos θ = = r 5 5 & terminal side of θ in 1st quadrant. 13 Step 1: Identify the givens Step 2: Find y. 12 (Pythagorean Triple) or 5 x Cos θ = = so x = 5, r = 13 132 5 2 y 2 13 r y 12 Sin θ = = 13 r 6. Find sin θ when cos θ = Practice: Sin/Cos of Angle in Standard Position 7. Find values of sin and cos of angle in standard position with measure θ, point P(8,15) on its terminal side. 8. Find sin θ when cos θ = 8 & terminal side of θ in 1st quadrant. 17 5 Trigonometry Trig Functions of Angle in Standard Position For angle in standard position with measure θ, point P(x,y) on its terminal side and r = x 2 y 2 y x y opposite sin opposite adjacent sin θ = = cos θ = = tan θ = = = r r x adjacent cos hypotenuse hypotenuse csc θ = 1 r hypotenuse = = sin y opposite sec θ = r 1 hypotenuse = = x cos adjacent adjacent cos x = = opposite sin y 1 = tan cot θ = Examples: Trig Functions of Angle in Standard Position 1. Terminal side of angle θ in standard position contains point (8,-15). Find tan θ, cot θ, sec θ and csc θ. Step 1: Find r r = 17 if you remember Pythagorean triples otherwise r= x 2 y 2 = 8 2 (15) 2 = 17 Step 2: Write ratios y 15 17 r tan θ = = csc θ = = x 8 y 15 sec θ = r 17 = x 8 cot θ = 8 x = y 15 2. If csc θ = -2 and θ lies in Quadrant III, find sin θ, cos θ, tan θ, cot θ and sec θ. Step 1: find its reciprocal function Since cscθ and sinθ are reciprocals, sin θ = 1 2 Step 2: Since we have y and r, find x 2 2 x 2 (1) 2 x = ±√3 Since terminal side of θ in Quandrant III, x = -√3 Step 3: Write ratios 3 cos θ = 2 sec θ = 2 3 3 tan θ = 3 3 cot θ = √3 Practice: Trig Functions of Angle in Standard Position 3. Terminal side of angle θ in standard position contains point (-3,-4). Find tan θ, cot θ, sec θ and csc θ. 4. If sec θ = 2 and θ lies in Quadrant IV, find sin θ, cos θ, tan θ, cot θ, and csc θ. 6 Trigonometry Trig Functions of Special Angles Quandrantal Angles Terminal sides lie along axis. Examples: 0, 90, 180, 270 Using unit circle, let (x,y) be coordinates of point of intersection of circle with terminal side of angle. Example: Find trig functions of quandrantal angle 1. Find the 6 trig function values for 90º Point is (0,1) therefore, sin 90º = 1 and cos 90º = 0 1 0 tan 90º = = undefined cot 90º = = 0 csc 90º = 1 0 1 2. Find the 6 trig function values for π Point is (-1,0) therefore, cos π = -1 and sin π = 0 0 1 tan π = =0 cot π = = undefined 1 0 sec 90º = undefined csc π = undefined sec π = -1 Practice: Find trig functions of quandrantal angle 3. Find the 6 trig function values for 2π Use reference angle to find value of trig function Given an angle, find the reference angle then determine the trig functions. Example: Using reference angles 5 4. Find cos 6 Step 1: Find reference angle 5 α= so terminal side is in QII. 6 5 α’ = π - α = π = (30º) 6 6 Step 2: Find cos 5 cos = -cos (since cos < 0 in QII) 6 6 3 = 2 Practice: Using reference angles 11 5. Find tan 4 6. Find csc 29 3 7 Trigonometry Using Calculators Unless otherwise noted, make sure mode of calculator is in degrees not radians. When trying to find the csc, sec and cot values, do not use sin-1, cos-1 and tan-1 function keys. Those are 1 1 1 used to find the angle value not the trig function value. Use the tan, sin and cos functions. x x x Examples: Using Calculators – sin, cos, tan Find each value to the nearest thousandth. 1. tan 45º 2. sin 80º 45 tan enter or tan 45 enter 80 sin enter or sin 80 enter Answer: 1 Answer: 0.985 Examples: Using Calculators – csc, sec and tan Find each value to the nearest thousandth. 4. cot -75º 5. csc 128º 1 tan (-75) Ans-1(x-1) 128 sin x Answer: -.2679 Answer: 1.269 Practice: Using Calculators 7. sec 90º 8. csc 125 º 3. cos 90º 90 cos enter or cos 90 enter Answer: 0 6. sec 187º 1 x Answer: -1.008 187 cos 9. cot(-40º) 10. sin 140º 11. cos (-82º) Trig Identities Pythagorean Identities (cosθ)2 + (sin θ)2 = 1 1 + (tan θ) 2 = (sec θ)2 1 + (cot θ) 2 = (csc θ)2 Example: Writing 1 trig function in terms of others 1. Write cosθ in terms of tanθ 1 1 cosθ = so (cosθ)2 = sec (sec ) 2 1 Using 1 + (tan θ) 2 = (sec θ)2, (cosθ)2 = 1 (tan ) 2 cosθ = 1 1 (tan ) 2 Practice: Writing 1 trig function in terms of others 2. Use the statement (cosθ)2 + (sin θ)2 = 1 to prove each of the following a. 1 + (tan θ) 2 = (sec θ)2 b. 1 + (cot θ) 2 = (csc θ)2 8 Trigonometry Trig Relationships Odd/Even Functions For all angles θ, cos (-θ) = cos θ and sin (-θ) = -sin θ For all angles θ (where cos θ ≠ 0), tan (-θ) = -tan θ and sec(-θ) = sec θ For all angles θ (where sin θ ≠ 0), cot (-θ) = -cot θ and csc (-θ) = -csc θ Supplementary Angles For all angles θ, sin (π-θ) = sin θ and cos (π-θ) = -cos θ Complementary Angles sin θ = cos ( 2 ) sec θ = csc ( Examples: Simplify Expressions 1. Simplify the expression cos(-θ)tan(-θ) sin( ) cos(-θ) * = sin (-θ) = -sin θ cos( ) 2 ) tan θ = cot ( 2 ) 2. Rewrite sin (90- θ) in terms of cos θ sin (90 – θ) = cos θ Practice: Simplify Expressions in terms of sin or cos 3. sin ( ) 4. cos (270 – θ) 5. sin (180 + θ) 2 Examples: True/False Determine the validity of the following statements when θ = 125 7. cos (-θ) = cos θ 8. sin (-θ) = - sin θ 9. tan (-θ) = -tan θ True True True 6. cos( ) 2 10. sec (-θ) = -sec θ False, should be sec θ Examples: Finding values 11. Given terminal point (-2,11). Find the following a. sin (-θ) b. cos (-θ) c. tan (-θ) Step 1: Identify quadrant Step 2: (x,y) are given, determine r r = x 2 y 2 = (2) 2 (11) 2 = 5√5 Quadrant II Step 3: Find the desired trig function 11 2 sin(-θ) = -sinθ = cos (-θ) = cos θ = 5 5 5 5 Practice: Finding values 12. Given terminal point (-8,-1). Find the following a. sin (-θ) b. cos (-θ) 9 tan (-θ) = -tanθ = c. tan (-θ) 11 2 Trigonometry Inverse Trig Functions Inverses of Trig Functions Sin func is set of all ordered pairs (x, sinx) Arcsine func is set of all ordered pairs (sinx, x) with domain –1 ≤ x ≤ 1 & range set of all real # Inverse of trig function gives angle that has the specified value of given function. Note: none of inverses of trig functions are functions Trig Function y = sin x y = cos x y = tan x Inverse Trig Function x = sin-1 y or x = arcsin y x = cos-1 y or x = arcos y x = tan-1 y or x = arctan y Example: Finding values of x for trig functions 1. Find all positive values of x for which cos x = 3 . 2 3 3 , then x is angle or real # whose cos = . 2 2 3 11 X = arccos ; Therefore, x = 30, 330, 390, 690, etc or , ,etc 6 2 6 If cos x = Practice: Finding values of x for trig functions 2. Find all positive values of x for which tan x = 1. 3. Find all positive values of x for which sin x = 3 2 Examples: Evaluate each expression. 1. sin (arcsin 0.4212) let x = arcsin0.4212 sinx = 0.4212 Therefore, by substitution, sin(arcsin0.4212) = 0.421 5 2. tan (arcsin ) 13 5 5 let A = arcsin then sin A = . Since A > 0, A in either Quadrant I or II. 13 13 sin A Since tan A = , find cos A: x2 + y2 = r2; x = 12 cos A 12 Therefore, cos A = . 13 5 5 sin A 13 5 tan (arcsin ) = tan A = = = 13 sin B 12 12 13 Practice: Evaluate each expression 5 3. tan (arctan 2.34) 4. cot(arctan ) 5. sec(arccos 1) 8 10 Trigonometry Principal Values of Inverse Trig Functions Principal Values Values in the domain of restricted domain trig functions. Trig functions with restricted domains depicted with capital letters (Ex: Sin, Cos instead of sin, cos) Y = Sin x iff y = sin x and –90 ≤ x ≤ 90 Y = Cos x iff y = cos x and 0 ≤ x ≤ 180 Y = Tan x iff y = tan x and –90 < x < 90 If Y = Sin x, inverse function is y = Sin-1 x or y = Arcsinx If Y = Cos x, inverse function is y = Cos-1 x or y = Arccosx If Y = Tan x, inverse function is y = Tan-1 x or y = Arctanx Examples: Finding values of x for trig functions Find each value. 1. Arccos ½ Let = Arccos ½ Cos = ½ (def of Arccos function) = 60 Therefore, Arccos ½ = 60 ) 4 Let x = tan x=1 2. Sin-1 (tan 4 Sin-1 (tan ) = Sin-1 (1) = 4 2 3. sin (Sin-1 1 – Cos-1 ½) Let = Sin-1 1 and = Cos-1 ½ Sin = 1 = 90 Cos = ½ = 60 sin (Sin-1 1 – Cos-1 ½) = sin ( - ) = sin (90 - 60) = sin 30 = ½ Practice: Finding values of x for trig functions 5. Tan-1 (sin 4. Arcsin -½ ) 2 6. cos (Arctan 3 – Arcsin Practice: Finding inverse trig functions using calculators 1. Find radian measure of angle in Quadrant I with tangent of 1.3284 Arctan 1.3284 = Make sure calculator set to radian mode 1.3284 2nd TAN enter Answer is 0.926 5 5 2. Find sin (Arcsin – Arccot ) 12 3 5 12 = 2nd SIN – (5 3) 1/x 2nd TAN = SIN Answer is –0.1104185 3. Find radian measure of angle in Quadrant I with sin of 0.4867 4. Find tan (Arccos 5 – Arcsin 0.3) 8 11 3 ) 2 Trigonometry Solving Right Triangles Trig Functions in Right Triangle SOH-CAH-TOA a opposite Sin A = = hypotenuse c b adjacent Cos A = = hypotenuse c opposite a Tan A = = adjacent b Example: Find trig functions of right triangle Find values of 6 trig functions of α. 5 12 5cm 13cm sin α = cos α = 13 13 α 12cm B a c C tan α = b 5 12 csc α = A 13 5 sec α = 13 12 cot α = 12 5 Practice: Find trig functions of right triangle Given right triangle with sides of length 8,15, 17. Find values of 6 trig functions of α. 8cm 17cm α 15cm Finding value of x When given a triangle and asked to find the value of x Identify the hypotenuse, leg opposite and leg adjacent to the given angle. Determine which trig ratio to use Set up ratio and solve for x. Example: Finding value of x Find the value of x to the nearest tenth. Step 1: Identify the givens 73 42 73 Hypotenuse: 42 x Leg opposite 73 = x Step 3: Set up ratio and solve for x x sin 73 = 42 Step 2: Determine which trig ratio to use Given hypotenuse & op leg; use sin 42 * sin 73 = x 42 * 0.956 = x Practice: Finding value of x Find the value of x to the nearest tenth. x x 17 13 32 36 12 40.2 = x Trigonometry Solve right triangle To solve a triangle means to find all of measures of its sides and angles. Usually given 2 measures. A b c C a B Examples: Solve right triangle 1. Solve right ∆ABC. Round angle measures to nearest degree & side measure to nearest tenth. A =49º, a=7 Step 1: Find B 49º + B = 90º (A & B are complementary) B = 41º Step 2: Find c Step 3: Find b 7 c 7 0.7547 = c c = 9.3 7 b 7 1.1504 = b b = 6.1 Sin 49º = tan 49º = Practice: Solve right triangle 2. Solve right ∆ABC. Round angle measures to nearest degree & side measure to nearest tenth. A =52º, a = 12 3. Solve right ∆ABC. Round angle measures to nearest degree & side measure to nearest tenth. B =49º, a=9 Finding measure of angle When given 2 sides of triangle, can be determined based on ratio of the 2 sides. This is easily done with calculator. Example: KC3: Finding measure of angle 1. In ∆ABC, c=14 and b =8, find the measure of B to nearest degree. Step 1: Determine the ratio provided. Step 2: Write ratio Step 3: Use calculator to solve for B. 2nd sin(8 ÷ 14) enter 8 8 is opposite B sin B = 14 is hypotenuse 14 Use sin Practice: Finding measure of angle 2. In ∆ABC, c=12 and a =10, find the measure of B to nearest degree. 3. In ∆ABC, b=10.4 and a =9, find the measure of B to nearest degree. 13 Trigonometry Solving Triangles Law of Sines Sides of a triangle are proportional to sines of opposite s. a b c = = SinA SinB SinC a SinA b SinB c SinC , , b SinB c SinC a SinA Law of Cosines Square of any side is equal to sum of squares of other 2 sides minus twice product of these sides and cosine of their included angle. a2 = b2 + c2 – 2bc(cosA) b2 = a2 + c2 – 2ac(cosB) c2 = a2 + b2 – 2ab(cosC) Types of Triangles If c is the length of the longest side of a triangle then o If a2 + b2 > c2, triangle is acute o If a2 + b2 = c2, triangle is right o If a2 + b2 < c2, triangle is obtuse Oblique Triangles Case 1: given 1 side and 2 angles (use law of sines) Case 2: given 2 sides & opposite 1 of them (use law of sines) Case 3: given 2 sides & included angle. (SAS) (use law of cos) Case 4: given 3 sides. (SSS) (use law of cos) Number of Solutions 2 Solutions: if A is acute and value of a lies between b and b sinA No Solution: if A is acute and a < b sinA or if A is obtuse & a < b or a = b 1 Solution: in all other cases Case 1 Example: 1 side, 2 angles Given B=30º, C=105º and a = 7.07 find the remaining parts. Step 1: Find A, using 180 – (B+C) = 180 – (30+105) = 180 – 135 = 45º. b SinB c SinC Step 2: Find b using law of sines: Step 3: Find c using law of sines: a SinA a SinA bSinB aSinC b= c= SinA SinA 7.07(sin 30) 7.07(sin( 180 105)) 7.07(sin 75) b= c= = sin 45 sin 45 sin 45 7.07(0.5) 7.07(0.966) b= c= .707 .707 b=5 c= 9.66 14 Trigonometry Case 1 Practice Given A=65º, B=40º and a = 50, find C, b, and c. Case 2 Example: 2 sides, angle opposite 1 of them Given a = 40, b = 30 and A=75º. Find the remaining parts. Step 1: Since a > b & A is acute, only 1 solution. Step 3: Find C. C = 180 – (A + B) = 180 - 121º 25’ = 58º 35’ a b = SinA SinB bSinA 30(0.9659) Sin B= = = 0.7244 a 40 B = 46º 25’ Step 2: Find B, using law of sines: c SinC a SinA aSinC 40(0.8535) c= = = 35.3 sin A .9659 Step 4: Find c using law of sines: Case 2 Practice: 2 sides, angle opposite 1 of them Given a = 40, b = 30 and A=75º. Find the remaining parts. Case 3 Example: 2 sides, included angle Given a = 132, b = 224 and C=28º40’. Find the remaining parts. Step 1: Find c, using law of cosines: c2 = a2 + b2 – 2ab(cosC) = (132)2 + (224)2 – 2(132)(224)(cos28º40’) = (132)2 + (224)2 – 2(132)(224)(0.8774) = 15,714 c = 125 aSinC 132(sin 2840' ) 132(0.4797) Step 2: Find A using law of sines: sinA = = = c 125 125 = 0.5066 so A = 30º30’ bSinC 224(sin 2840' ) 224(0.4797 ) Step 3: Find B using law of sines: sinB = = = c 125 125 = 0.8596 so B = 120º40’ Case 3 Practice: 2 sides, included angle Given a = 30, b = 54 and C=46º. Find the remaining parts. 15 Trigonometry Case 4 Example: 3 sides Given a = 30.3, b = 40.4 and c=62.6. Find the remaining parts. b 2 c 2 a 2 2bc 40.4 2 62.6 2 30.32 = 2(40.4)(62.6) = 0.9519 Step 1: Find A, using law of cosines: cos A = A = 23º40’ a 2 c 2 b 2 2ac 30.32 62.6 2 40.4 2 = 2(30.3)(62.6) = 0.8448 Step 2: Find B, using law of cosines: cos B = B = 32º20’ a 2 b 2 c 2 2ab 30.32 40.4 2 62.6 2 = 2(30.3)( 40.4) = -0.5590 Step 3: Find C, using law of cosines: cos C = C = 124º Step 4: Check A + B + C = 180º 23º40’ + 32º20’ + 124º = 180º Case 4 Practice: 3 sides Given a = 24.5, b = 18.6 and c=26.4. Find the remaining parts. More Practice: Law of Sine/Cosine 1. a = 125, A = 54º40’, B=65º10’ 2. b = 321, A = 75º20’, C= 38º30’ 3. b = 215, c = 150, B = 42º40’ 4. a = 512, b = 426, A = 48º50’ 5. b = 120, c = 270, A = 118º40’ 6. a = 6.34, b = 7.30, c = 9.98 16