Download Introduction to Astronomy Lab

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Indian Institute of Astrophysics wikipedia , lookup

Cosmic distance ladder wikipedia , lookup

Astronomical spectroscopy wikipedia , lookup

Transcript
Chabot College
Fall 2006
Course Outline for Astronomy 30
INTRODUCTION TO ASTRONOMY LAB
Catalog Description:
30 – Introduction to Astronomy Lab
1 unit
Introduction to laboratory principles and techniques in astronomy. Includes telescope operation and
measuring stellar magnitudes, spectral lines, motions of the sun, moon and planets.
Prerequisite/Corequisite: Astronomy 1, 10, or 20. 3 hours laboratory.
[Typical contact hours: 52.5]
Prerequisite Skills:
None
Expected Outcomes for Students:
Upon completion of the course, the student should be able to:
1.
write a laboratory report that identifies the processes of the scientific method applied to course
experiments;
2.
identify distances and sizes in the solar system;
3.
identify and determine the angular diameter of an object;
4.
identify ten bright stars and ten constellations visible during the semester;
5.
locate, using binoculars and telescopes, at least five celestial objects (such as nebulae, star
clusters, and galaxies) not normally visible to the naked eye;
6.
describe the difference between, and conditions for, a solar and lunar eclipse;
7.
use the concept of parallax to determine the distance to an astronomical object;
8.
measure the angular separation of two objects using a sextant or other angular measuring
instrument;
9.
identify orbital mechanics and the Law of Universal Gravitation;
10.
analyze orbital properties of a planet’s moons to determine the mass of the planet;
11.
measure and calculate the Earth’s gravitational field, and explain its consequences for every-day
objects;
12.
explain the Doppler shift and its use in determining periods of rotation of planets;
13.
demonstrate an understanding of the fundamentals of digital and/or analog image processing;
14.
measure the wavelength of spectral lines commonly found in stellar spectra;
15.
explain how telescopes use lenses and/or mirrors to form images;
16.
align a telescope for proper operation;
17.
use the method of spectroscopic parallax to determine the distance to remote objects;
18.
identify the different types of galaxies by their structure;
19.
explain how a CCD camera can image more distant features than a photograph;
20.
explain how the Doppler shift may be used to create a Hubble Diagram, and from this to estimate
the age of the universe;
21.
measure the sun’s altitude using its shadow;
22.
determine the azimuth and altitude of the sun, moon and stars;
23.
draw a sketch of a star’s position on the celestial sphere when given that star’s azimuth and
altitude or its right ascension and declination;
24.
plot the path of the sun, moon or planets on a star chart;
25.
locate an object on a star chart when given its celestial coordinates.
Course Content:
1.
2.
3.
4.
Astronomy as a Science
Scaling and the Solar System
Naked Eye Observations and Sketches of the Moon and Night Sky
Circumpolar and Seasonal Constellations
Chabot College
Course Outline for Astronomy 30, page 2
Fall 2006
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
Telescopic Observations of Selected Objects
Celestial Coordinate Systems: Right Ascension and Declination, Altitude and Azimuth
Angular Diameter, Size and Distance
Studying Solar and Lunar Eclipses
Exploring Motions of the Heavens Using a Planetarium Program
Retrograde and Planetary Motions
Parallax and Astronomical Distances
Gravitation and Orbital Motion, Detecting Extra-Solar Planets
The Moons of Jupiter
The HR Diagram
Tracking Sunspots
Spectroscopy in Astronomy: Emission Spectra
Lenses and Telescopes
Predicting Solar Eclipses
An Introduction to Imaging Astronomical Objects: Surfaces of Solar-System Objects
Photoelectric Photometry of Star Clusters
Structure of Galaxies
Clusters of Galaxies
Hubble’s Law and The Expansion of the Universe
Methods of Presentation:
1.
2.
3.
4.
Three-hour laboratory session per week
Student experimentation
Instructor demonstration
Student participation in demonstrations
Assignments and Methods Evaluating Student Progress:
1.
Typical Assignments:
a.
b.
c.
Laboratory Exercise – Measuring star and planet altitudes with an astrolabe and
determining their change in position over time. Every measurement in an experiment
involves some uncertainty. Some uncertainties are random, resulting from reading a
measuring device a bit over or under the actual value, much as you might read
someone’s height with a ruler but be a bit uncertain about whether they were exactly
5’11-1/2”. Other errors in measurements are systematic, resulting from a consistently
incorrect usage of an instrument, or perhaps a broken or mis-calibrated device. There
are numerous statistical techniques scientists use to minimize the impact of
measurement uncertainties and random errors on experimental results. One of the
easiest techniques is simply to make multiple measurements and use the average;
another is to make multiple measurements with different observers or devices. You’ll do
both with the astrolabe experiment.
Computer Simulation – Astronomy program offer the user almost limitless opportunities to
learn about the sky. In this lab, we’ll use a relatively low-priced program for IBM and
Macintosh computers called TheSky (Student Edition, packaged with many astronomy
textbooks) from Software Bisque (http://www.bisque.com). Use the computer software
to: display the sky for any date or time, from any location on earth; display stars of
different magnitudes, constellation lines, boundaries, star names, and planets; locate any
particular star, planet, or constellation; extract information on azimuth, altitude, Right
Ascension (RA), and Declination (Dec) for any celestial object; and explore astronomical
phenomena like eclipses, sunrise and sunset positions along the horizon, planetary
conjunctions, and noontime angles of the sun around the earth.
Observational Activity – Lunar Motion. Begin this observation when the moon’s phase is
a waxing crescent, or first quarter. You’ll need at least 4-5 nights of clear weather to spot
both the moon and the surrounding background stars. If the weather is “uncooperative”
in the middle of your observation period, you’ll need to start again in another month.
Choose a particular time between 8 and 10 PM to observe the moon. Use the Moon
Chabot College
Course Outline for Astronomy 30, page 3
Fall 2006
d.
2.
Observation Sheets to record your observations under the heading “Observational Data.”
For each observation, identify the constellations that lie near and if possible, behind
themoon. Use your star guide to help identify the stars near the moon and then
determine the constellations. Sketch the appearance of the moon and its position relative
to the horizon for each observation. Estimate the moon’s approximate altitude and
azimuth. After you have completed your observations, use the computer to obtain the
precise values for these coordinates, as well as the moon’s position.
Field Trip – Observing constellations and planets from a dark sky location. Working with
a partner, and using your star locator guide, identify at least 10 key constellations visible
in the sky, including at least two zodiacal constellations and two circumpolar
constellations. Make a list of the constellations you identified. Depending upon the
month and year, one or more planets may be visible. Use the star guide to identify the
constellation positions of planets for your observation date, and sketch the position of the
observed planets within the constellation.
Methods of Evaluating Student Progress
a.
Individual and/or group projects and reports
b.
Attendance and participation in laboratory activities
c.
Constellation and lab quizzes
d.
Final exam
Textbook(s) (Typical):
Practical Astronomy Labs, Hildreth and Smith, Bonneau and Smith Publishers, 2004
Special Student Materials:
Edmund’s Star & Planet Locator
SH:al
Revised: 10-05-05