Download plane trig part 5

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
PLANE TRIG 6232e
2) Draw the portion of the graph (y = Cos(x)) from 0° to 360°.
Solve the following trigonometric equations.
Give all positive values of the angle between 0° and 360° that will satisfy each.
Give any approximate value to the nearest minute only.
3) Sin(2  ) = √3/2
ANSWER

= 30°, 60°, 120°, 150°, 210°, 240°, 300°, 330°
√3/2 can have positive or negative values
sin
-1(+/-√3/2)
= 0°+/-60°, 180°+/-60°, 360+/-60°, 540+/-60°, 720+/-60°
Thus: (2*φ) = 60°, 120°, 240°, 300°, 420°, 480°, 600°, 660°

= 30°, 60°, 120°, 150°, 210°, 240°, 300°, 330°
4) Sin(2*x) - Cos(x) = 0
ANSWER
Sin(2*x) - Cos(x) = 0
Therefore: Sin(2*x) = Cos(x)
But for opposing angles A and B in a right angled triangle Sin (A) = Cos (B)
Sin (A) = Cos (90°-A)
That is, A + B = 90° .
Hence 2*x + x = 90°
3*x = 90°
x = 90°/3 = 30°
Sin(2*x) = Cos(x) = √3/2
One other solution x = 90°
Sin(2*x) = Cos(x) = 0
x = 30°, 90°
5) Sin(2*x - 10°) = 1/2
Answer:
sin -1 (+1/2) = 30°
2*x - 10° = 30°
2*x = 40°
x = 20°
sin -1 (+1/2) = 150°
2*x - 10° = 150°
2*x = 160°
x = 80°
x = 20°, 80°
--------------------------------------------------------6) Cos(2*x) - Sin²(x/2) + 3/4 = 0
Cos(2*x) = 2*Cos²(x) - 1
Sin²(x/2) = (1 - Cos(x)) / 2
Thus Cos(2*x) - Sin²(x/2) + 3/4 = 0
(2*Cos²(x) - 1) - ((1 - Cos(x)) / 2) + 3/4 = 0
2*Cos²(x) + (1/2)*Cos(x) - 3/4 = 0
Cos²(x) + (1/4)*Cos(x) - 3/8 = 0
This is a Quadratic Equation which can be solved using the Quadratic Formula Cos(x) = [-(1/4) +/- √((1/4)²-4*1*(-3/8))] / 2
Cos(x) = +0.5 or -0.75
cos
cos
-1
-1
(+0.5) = 60°, 300°
(-0.75) = 138°35', 221°25'
x = 60°, 138°35', 221°25', 300°
7) Sin²(2*φ) = Cos²(2*φ) + 1/2
ANSWER
φ = 30°, 60°, 120°, 150°, 210°, 240°, 300°, 330°
DERIVATION
Sin²(2*φ) = Cos²(2*φ) + 1/2
Sin²(2*φ) = (1-Sin²(2*φ)) + 1/2
2*Sin²(2*φ) = 1+ 1/2 = 3/2
Sin²(2*φ) = 3/4
Sin(2*φ) = +/-√3/2
(2*φ) = Asin(+/-√3/2) = 60°, 120°, 240°, 300°, 420°, 480°, 600°, 660°
φ = 30°, 60°, 120°, 150°, 210°, 240°, 300°, 330°
---------------------------------------------------------8) Cos(4*x) = Sin(2*x)
ANSWER
x = 15°, 135°
DERIVATION
For opposing angles A and B in a right angled triangle Sin (A) = Cos (B)
Sin (A) = Cos (90°-A)
Sin(90°-A) = Cos(A)
Therefore Cos(4*x) = Sin(2*x)
Cos(4*x) = Sin(90°-4*x)
So Sin(2*x) = Sin(90°-4*x)
2*x = 90°-4*x
6*x = 90°
x = 90°/6 = 15°
[ Cos(4*x) = Sin(2*x) = 0.5 ]
One other solution x = 135°
[ Cos(4*x) = Sin(2*x) = -1 ]
---------------------------------------------------------9) 3*Sin(φ) - 4*Cos(φ) = 2
ANSWER
φ = 76°43'
DERIVATION
A*Sin(φ) + B*Cos(φ) = √(A²+B²)*sin(φ+C)
A=3
B = -4
where C = Atan(B/A) if (A >= 0)
C = Atan(B/A)+/-180° if (A < 0)
So C = -53.13°
√(A²+B²) = √(9+16) = √25 = 5
Therefore 3*Sin(φ) - 4*Cos(φ) = 5*Sin(φ-53.13°) = 2
5*Sin(φ-53.13°) = 2
Sin(φ-53.13°) = 2/5 = 0.4
φ-53.13° = Asin(0.4) = 23.5782°
φ = 23.5782° + 53.13° = 76.7082°
φ = 76.7082°
φ = 76°43'
---------------------------------------------------------10) Tan(x+15°) = 3*Tan(x)
ANSWER
x = 8°5', 66°55', 188°5', 246°55'
DERIVATION
Tan(x+y) = (Tan(x) + Tan(y)) / (1 - Tan(x)*Tan(y))
Thus Tan(x+15°) = (Tan(x) + Tan(15°)) / (1 - Tan(x)*Tan(15°))
Tan(x+15°) = 3*Tan(x)
(Tan(x) + Tan(15°)) / (1 - Tan(x)*Tan(15°)) = 3*Tan(x)
Tan(x) + Tan(15°) = 3*Tan(x)*(1 - Tan(x)*Tan(15°))
Tan(x) + Tan(15°) = 3*Tan(x) - 3*Tan²(x)*Tan(15°)
Tan(15°) = 2*Tan(x) - 3*Tan²(x)*Tan(15°)
3*Tan(15°)*Tan²(x) - 2*Tan(x) + Tan(15°) = 0
Tan²(x) - (2/(3*Tan(15°))*Tan(x) + (1/3) = 0
Tan²(x) - 2.488034*Tan(x) + 0.3' = 0
This is a Quadratic Equation which can be solved using the Quadratic Formula Tan(x) = [2.488034 +/- √(2.488034² - 4*1*0.3')] / 2
Tan(x) = 2.345945 or 0.142089
x = Atan(2.345945) = 66°55', 246°55'
x = Atan(0.142089) = 8°5', 188°5'
---------------------------------------------------------11) Write equivalent functions in terms of inverse functions for a) x = y + Cos(φ)
b) Cos(y) = x²
ANSWER
a) φ = Acos(x-y)
b) y = Acos(x²)
DERIVATION
a) x = y + Cos(φ)
x = y + Cos(φ)
x - y = Cos(φ)
Cos(φ) = (x-y)
φ = Acos(x-y)
b) Cos(y) = x²
Cos(y) = x²
y = Acos(x²)
---------------------------------------------------------12) Give the value of a) Asin(Cos(x)) (Limit solution to an acute angle)
b) Tan(Asin(x))
c) Tan(Atan((x+1)/(x-1)) + Atan((x-1)/(x+1)))
ANSWER
a) Asin(Cos(x)) = (90°-x)
b) Tan(Asin(x)) = x / √(1 - x²)
c) Tan(90°) = ∞
DERIVATION
a) Asin(Cos(x))
Cos(x) = Sin(90°-x)
So Asin(Cos(x)) = Asin(Sin(90°-x)) = (90°-x)
b) Tan(Asin(x))
Tan(φ) = Sin(φ) / Cos(φ) = Sin(φ) / √(1 - Sin²(φ))
So Tan(Asin(x)) = Sin(Asin(x)) / √(1 - Sin²(Asin(x)))
Tan(Asin(x)) = x / √(1 - x²)
c) Tan(Atan((x+1)/(x-1)) + Atan((x-1)/(x+1)))
Atan(z) + Atan(1/z) = 90°
Let [ z = (x+1)/(x-1) ], so Tan(Atan((x+1)/(x-1)) + Atan((x-1)/(x+1)))
= Tan(Atan(z) + Atan(1/z))
= Tan(90°)
=∞
---------------------------------------------------------13) Solve: Acos(x) + Acos(2*x) = 60°
ANSWER
x = 0.5
DERIVATION
(Acos(x) = Φ)
Cos(Φ) = x
(Acos(2*x) = Θ)
Cos(Θ) = 2*x
Therefore Cos(Θ) / Cos(Φ) = (2*x) / x = 2
Cos(Θ) = 2*Cos(Φ)
Also Acos(x) + Acos(2*x) = 60°
(Φ + Θ = 60°)
(Θ = 60° - Φ)
So Cos(Θ) = 2*Cos(Φ)
Cos(60° - Φ) = 2*Cos(Φ)
Now, [ Cos(A-B) = Cos(A)*Cos(B) + Sin(A)*Sin(B) ]
So Cos(60° - Φ) = Cos(60°)*Cos(Φ) + Sin(60°)*Sin(Φ)
Cos(60° - Φ) = (1/2)*Cos(Φ) + (√3/2)*Sin(Φ)
And since Cos(60° - Φ) = 2*Cos(Φ)
Then 2*Cos(Φ) = (1/2)*Cos(Φ) + (√3/2)*Sin(Φ)
(3/2)*Cos(Φ) = (√3/2)*Sin(Φ)
3*Cos(Φ) = √3*Sin(Φ)
3/√3 = Sin(Φ) / Cos(Φ)
Tan(Φ) = √3
Φ = Atan(√3) = 60°
Θ = 60° - Φ = 60° - 60° = 0°
Cos(Φ) = x = Cos(60°) = 0.5
Cos(Θ) = 2*x = Cos(0°) = 1.0
x = 0.5
---------------------------------------------------------14) Verify the identity: Tan(2*Atan(x)) = 2*Tan(Atan(x) + Atan(x^3))
ANSWER
Refer to the derivation below.
DERIVATION
Tan(2*Atan(x)) = 2*Tan(Atan(x) + Atan(x^3)) --- Eq 00
Separate the two sides of Eq 00 LHS = Tan(2*Atan(x))
RHS = 2*Tan(Atan(x) + Atan(x^3))
Let [ x = Tan(Φ) ]
So [ Atan(x) = Φ ]
LHS = Tan(2*Atan(x))
LHS = Tan(2*Φ)
RHS = 2*Tan(Atan(x) + Atan(x^3))
RHS = 2*Tan(Φ + Atan(Tan^3(Φ)))
Let [ Atan(Tan^3(Φ)) = ß ]
RHS = 2*Tan(Φ + Atan(Tan^3(Φ)))
RHS = 2*Tan(Φ + ß)
Now show that the LHS = RHS for Eq 00 We know that [ Tan(2*Φ) = 2*Tan(Φ) / (1 - Tan²(Φ)) ], so LHS = 2*Tan(Φ) / (1 - Tan²(Φ))
RHS = 2*Tan(Φ + ß)
Divide both sides by 2 LHS = Tan(Φ) / (1 - Tan²(Φ))
RHS = Tan(Φ + ß)
Now, we know that [ Tan(Φ+ß) = (Tan(Φ) + Tan(ß)) / (1 - Tan(Φ)*Tan(ß)) ], so LHS = Tan(Φ) / (1 - Tan²(Φ))
RHS = (Tan(Φ) + Tan(ß)) / (1 - Tan(Φ)*Tan(ß))
Multiply both sides by (1 - Tan²(Φ)) LHS = Tan(Φ)
RHS = (Tan(Φ) + Tan(ß))*(1 - Tan²(Φ)) / (1 - Tan(Φ)*Tan(ß))
Multiply both sides by (1 - Tan(Φ)*Tan(ß)) LHS = Tan(Φ)*(1 - Tan(Φ)*Tan(ß))
RHS = (Tan(Φ) + Tan(ß))*(1 - Tan²(Φ))
Expand terms for both sides LHS = Tan(Φ) - Tan²(Φ)*Tan(ß)
RHS = Tan(Φ) - Tan^3(Φ) + Tan(ß) - Tan²(Φ)*Tan(ß)
Subtract (Tan(Φ) - Tan²(Φ)*Tan(ß)) from both sides LHS = 0
RHS = -Tan^3(Φ) + Tan(ß)
Add (Tan^3(Φ)) to both sides LHS = Tan^3(Φ)
RHS = Tan(ß)
Substitute the definition for ß into the RHS, ie, [ Atan(Tan^3(Φ)) = ß ] LHS = Tan^3(Φ)
RHS = Tan(ß) = Tan(Atan(Tan^3(Φ))) = Tan^3(Φ)
Therefore we have shown that LHS = RHS for Eq 00.
Related documents