Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
PLANE TRIG 6232e 2) Draw the portion of the graph (y = Cos(x)) from 0° to 360°. Solve the following trigonometric equations. Give all positive values of the angle between 0° and 360° that will satisfy each. Give any approximate value to the nearest minute only. 3) Sin(2 ) = √3/2 ANSWER = 30°, 60°, 120°, 150°, 210°, 240°, 300°, 330° √3/2 can have positive or negative values sin -1(+/-√3/2) = 0°+/-60°, 180°+/-60°, 360+/-60°, 540+/-60°, 720+/-60° Thus: (2*φ) = 60°, 120°, 240°, 300°, 420°, 480°, 600°, 660° = 30°, 60°, 120°, 150°, 210°, 240°, 300°, 330° 4) Sin(2*x) - Cos(x) = 0 ANSWER Sin(2*x) - Cos(x) = 0 Therefore: Sin(2*x) = Cos(x) But for opposing angles A and B in a right angled triangle Sin (A) = Cos (B) Sin (A) = Cos (90°-A) That is, A + B = 90° . Hence 2*x + x = 90° 3*x = 90° x = 90°/3 = 30° Sin(2*x) = Cos(x) = √3/2 One other solution x = 90° Sin(2*x) = Cos(x) = 0 x = 30°, 90° 5) Sin(2*x - 10°) = 1/2 Answer: sin -1 (+1/2) = 30° 2*x - 10° = 30° 2*x = 40° x = 20° sin -1 (+1/2) = 150° 2*x - 10° = 150° 2*x = 160° x = 80° x = 20°, 80° --------------------------------------------------------6) Cos(2*x) - Sin²(x/2) + 3/4 = 0 Cos(2*x) = 2*Cos²(x) - 1 Sin²(x/2) = (1 - Cos(x)) / 2 Thus Cos(2*x) - Sin²(x/2) + 3/4 = 0 (2*Cos²(x) - 1) - ((1 - Cos(x)) / 2) + 3/4 = 0 2*Cos²(x) + (1/2)*Cos(x) - 3/4 = 0 Cos²(x) + (1/4)*Cos(x) - 3/8 = 0 This is a Quadratic Equation which can be solved using the Quadratic Formula Cos(x) = [-(1/4) +/- √((1/4)²-4*1*(-3/8))] / 2 Cos(x) = +0.5 or -0.75 cos cos -1 -1 (+0.5) = 60°, 300° (-0.75) = 138°35', 221°25' x = 60°, 138°35', 221°25', 300° 7) Sin²(2*φ) = Cos²(2*φ) + 1/2 ANSWER φ = 30°, 60°, 120°, 150°, 210°, 240°, 300°, 330° DERIVATION Sin²(2*φ) = Cos²(2*φ) + 1/2 Sin²(2*φ) = (1-Sin²(2*φ)) + 1/2 2*Sin²(2*φ) = 1+ 1/2 = 3/2 Sin²(2*φ) = 3/4 Sin(2*φ) = +/-√3/2 (2*φ) = Asin(+/-√3/2) = 60°, 120°, 240°, 300°, 420°, 480°, 600°, 660° φ = 30°, 60°, 120°, 150°, 210°, 240°, 300°, 330° ---------------------------------------------------------8) Cos(4*x) = Sin(2*x) ANSWER x = 15°, 135° DERIVATION For opposing angles A and B in a right angled triangle Sin (A) = Cos (B) Sin (A) = Cos (90°-A) Sin(90°-A) = Cos(A) Therefore Cos(4*x) = Sin(2*x) Cos(4*x) = Sin(90°-4*x) So Sin(2*x) = Sin(90°-4*x) 2*x = 90°-4*x 6*x = 90° x = 90°/6 = 15° [ Cos(4*x) = Sin(2*x) = 0.5 ] One other solution x = 135° [ Cos(4*x) = Sin(2*x) = -1 ] ---------------------------------------------------------9) 3*Sin(φ) - 4*Cos(φ) = 2 ANSWER φ = 76°43' DERIVATION A*Sin(φ) + B*Cos(φ) = √(A²+B²)*sin(φ+C) A=3 B = -4 where C = Atan(B/A) if (A >= 0) C = Atan(B/A)+/-180° if (A < 0) So C = -53.13° √(A²+B²) = √(9+16) = √25 = 5 Therefore 3*Sin(φ) - 4*Cos(φ) = 5*Sin(φ-53.13°) = 2 5*Sin(φ-53.13°) = 2 Sin(φ-53.13°) = 2/5 = 0.4 φ-53.13° = Asin(0.4) = 23.5782° φ = 23.5782° + 53.13° = 76.7082° φ = 76.7082° φ = 76°43' ---------------------------------------------------------10) Tan(x+15°) = 3*Tan(x) ANSWER x = 8°5', 66°55', 188°5', 246°55' DERIVATION Tan(x+y) = (Tan(x) + Tan(y)) / (1 - Tan(x)*Tan(y)) Thus Tan(x+15°) = (Tan(x) + Tan(15°)) / (1 - Tan(x)*Tan(15°)) Tan(x+15°) = 3*Tan(x) (Tan(x) + Tan(15°)) / (1 - Tan(x)*Tan(15°)) = 3*Tan(x) Tan(x) + Tan(15°) = 3*Tan(x)*(1 - Tan(x)*Tan(15°)) Tan(x) + Tan(15°) = 3*Tan(x) - 3*Tan²(x)*Tan(15°) Tan(15°) = 2*Tan(x) - 3*Tan²(x)*Tan(15°) 3*Tan(15°)*Tan²(x) - 2*Tan(x) + Tan(15°) = 0 Tan²(x) - (2/(3*Tan(15°))*Tan(x) + (1/3) = 0 Tan²(x) - 2.488034*Tan(x) + 0.3' = 0 This is a Quadratic Equation which can be solved using the Quadratic Formula Tan(x) = [2.488034 +/- √(2.488034² - 4*1*0.3')] / 2 Tan(x) = 2.345945 or 0.142089 x = Atan(2.345945) = 66°55', 246°55' x = Atan(0.142089) = 8°5', 188°5' ---------------------------------------------------------11) Write equivalent functions in terms of inverse functions for a) x = y + Cos(φ) b) Cos(y) = x² ANSWER a) φ = Acos(x-y) b) y = Acos(x²) DERIVATION a) x = y + Cos(φ) x = y + Cos(φ) x - y = Cos(φ) Cos(φ) = (x-y) φ = Acos(x-y) b) Cos(y) = x² Cos(y) = x² y = Acos(x²) ---------------------------------------------------------12) Give the value of a) Asin(Cos(x)) (Limit solution to an acute angle) b) Tan(Asin(x)) c) Tan(Atan((x+1)/(x-1)) + Atan((x-1)/(x+1))) ANSWER a) Asin(Cos(x)) = (90°-x) b) Tan(Asin(x)) = x / √(1 - x²) c) Tan(90°) = ∞ DERIVATION a) Asin(Cos(x)) Cos(x) = Sin(90°-x) So Asin(Cos(x)) = Asin(Sin(90°-x)) = (90°-x) b) Tan(Asin(x)) Tan(φ) = Sin(φ) / Cos(φ) = Sin(φ) / √(1 - Sin²(φ)) So Tan(Asin(x)) = Sin(Asin(x)) / √(1 - Sin²(Asin(x))) Tan(Asin(x)) = x / √(1 - x²) c) Tan(Atan((x+1)/(x-1)) + Atan((x-1)/(x+1))) Atan(z) + Atan(1/z) = 90° Let [ z = (x+1)/(x-1) ], so Tan(Atan((x+1)/(x-1)) + Atan((x-1)/(x+1))) = Tan(Atan(z) + Atan(1/z)) = Tan(90°) =∞ ---------------------------------------------------------13) Solve: Acos(x) + Acos(2*x) = 60° ANSWER x = 0.5 DERIVATION (Acos(x) = Φ) Cos(Φ) = x (Acos(2*x) = Θ) Cos(Θ) = 2*x Therefore Cos(Θ) / Cos(Φ) = (2*x) / x = 2 Cos(Θ) = 2*Cos(Φ) Also Acos(x) + Acos(2*x) = 60° (Φ + Θ = 60°) (Θ = 60° - Φ) So Cos(Θ) = 2*Cos(Φ) Cos(60° - Φ) = 2*Cos(Φ) Now, [ Cos(A-B) = Cos(A)*Cos(B) + Sin(A)*Sin(B) ] So Cos(60° - Φ) = Cos(60°)*Cos(Φ) + Sin(60°)*Sin(Φ) Cos(60° - Φ) = (1/2)*Cos(Φ) + (√3/2)*Sin(Φ) And since Cos(60° - Φ) = 2*Cos(Φ) Then 2*Cos(Φ) = (1/2)*Cos(Φ) + (√3/2)*Sin(Φ) (3/2)*Cos(Φ) = (√3/2)*Sin(Φ) 3*Cos(Φ) = √3*Sin(Φ) 3/√3 = Sin(Φ) / Cos(Φ) Tan(Φ) = √3 Φ = Atan(√3) = 60° Θ = 60° - Φ = 60° - 60° = 0° Cos(Φ) = x = Cos(60°) = 0.5 Cos(Θ) = 2*x = Cos(0°) = 1.0 x = 0.5 ---------------------------------------------------------14) Verify the identity: Tan(2*Atan(x)) = 2*Tan(Atan(x) + Atan(x^3)) ANSWER Refer to the derivation below. DERIVATION Tan(2*Atan(x)) = 2*Tan(Atan(x) + Atan(x^3)) --- Eq 00 Separate the two sides of Eq 00 LHS = Tan(2*Atan(x)) RHS = 2*Tan(Atan(x) + Atan(x^3)) Let [ x = Tan(Φ) ] So [ Atan(x) = Φ ] LHS = Tan(2*Atan(x)) LHS = Tan(2*Φ) RHS = 2*Tan(Atan(x) + Atan(x^3)) RHS = 2*Tan(Φ + Atan(Tan^3(Φ))) Let [ Atan(Tan^3(Φ)) = ß ] RHS = 2*Tan(Φ + Atan(Tan^3(Φ))) RHS = 2*Tan(Φ + ß) Now show that the LHS = RHS for Eq 00 We know that [ Tan(2*Φ) = 2*Tan(Φ) / (1 - Tan²(Φ)) ], so LHS = 2*Tan(Φ) / (1 - Tan²(Φ)) RHS = 2*Tan(Φ + ß) Divide both sides by 2 LHS = Tan(Φ) / (1 - Tan²(Φ)) RHS = Tan(Φ + ß) Now, we know that [ Tan(Φ+ß) = (Tan(Φ) + Tan(ß)) / (1 - Tan(Φ)*Tan(ß)) ], so LHS = Tan(Φ) / (1 - Tan²(Φ)) RHS = (Tan(Φ) + Tan(ß)) / (1 - Tan(Φ)*Tan(ß)) Multiply both sides by (1 - Tan²(Φ)) LHS = Tan(Φ) RHS = (Tan(Φ) + Tan(ß))*(1 - Tan²(Φ)) / (1 - Tan(Φ)*Tan(ß)) Multiply both sides by (1 - Tan(Φ)*Tan(ß)) LHS = Tan(Φ)*(1 - Tan(Φ)*Tan(ß)) RHS = (Tan(Φ) + Tan(ß))*(1 - Tan²(Φ)) Expand terms for both sides LHS = Tan(Φ) - Tan²(Φ)*Tan(ß) RHS = Tan(Φ) - Tan^3(Φ) + Tan(ß) - Tan²(Φ)*Tan(ß) Subtract (Tan(Φ) - Tan²(Φ)*Tan(ß)) from both sides LHS = 0 RHS = -Tan^3(Φ) + Tan(ß) Add (Tan^3(Φ)) to both sides LHS = Tan^3(Φ) RHS = Tan(ß) Substitute the definition for ß into the RHS, ie, [ Atan(Tan^3(Φ)) = ß ] LHS = Tan^3(Φ) RHS = Tan(ß) = Tan(Atan(Tan^3(Φ))) = Tan^3(Φ) Therefore we have shown that LHS = RHS for Eq 00.