Survey							
                            
		                
		                * Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Atmospheric Stability Stability of Atmosphere is affected by  Temperature of the surrounding environment  Temperature of the air parcel Environmental Lapse Rate (ELR) Altitude 6oC/1,000m 0 0 Temperature Isothermal Lapse Rate Altitude 0 0 Temperature Temperature Inversion Altitude (km) 2 1 0 0 10Temperature 20 Conditions for Radiation Inversion  At night  Clear sky  Calm condition  Relatively dry air  Snow cover Radiation loss Ground Air drainage inversion •In a valley •At night Cold air of higher density Cold air of higher density Warm air Frontal Inversion Warm air mass INVERSION Cold air mass Ground Advection of warm air over a cold surface Adiabatic lapse rate  Adiabatic cooling  Decrease in temperature without heat exchange with surrounding air  When an air parcel is forced to rise,  It expands due to the lower air pressure of surrounding air  Increase of volume leads to decrease in temperature Dry adiabatic lapse rate  DALR  Temperature change of dry air mass  1oC/100 m Saturated adiabatic lapse rate  SALR - Temperature change of air mass when condensation occurs  6oC/1,000 m in usual cases  SALR depends on  Moisture content & temperature  Higher moisture content leads to smaller lapse rate  SALR is smaller when temperature is lower Absolutely Unstable Air Altitude DALR SALR ELR% > DALR > SALR ELR 0 0 Temperature Absolutely Unstable Air Altitude SALR ELR% > DALR > SALR ELR Condensation level DALR 0 0 Temperature Absolutely Unstable Air • ELR% > DALR > SALR • Therefore, the rising air parcel is always hotter than the surrounding air • The density is lower • Further upwards displacement is resulted  For a sinking air parcel, further downwards displacement is resulted Conditionally Stable / Unstable Air Altitude ELR SALR DALR> ELR > SALR DALR 0 0 Temperature Conditionally Stable / Unstable Air  DALR > ELR  Means the air parcel is cooler than surrounding air  It will not rise if the external force discontinues  However, when condensation takes place  Latent heat is released  The air parcel cools more slowly : ELR>SALR  The air parcel will become warmer than surrounding air - Unstable Absolutely Stable Air ELR% < SALR < DALR Altitude SALR ELR Air parcel tends to return to its original position DALR 0 0 Temperature Stability and Cloud formation  Instability leads to continuous rise of air parcel  Thick clouds such as cumulus and cumulonimbus will be formed  Stability will make rising air parcel go back to original position  Only thin clouds such as stratus Atmospheric stability and cloud development Altitude ELR Cloud top SALR Air parcel tends to rise because of higher temperature Condensation level DALR 0 0 Temperature Reference Website www.piercecollege.com/offices/weather/s tability.html Lapse Rate Exercise Describe the change of ELR  Below 250m, temperature increases with height causing a temperature inversion  From 250m upward, temperature generally decreased with increasing altitude at a rate about 12.4℃/1,000m  The ELR below 1,750m is greater than above, i.e. the temperature decreases more rapidly from 250m to 1,750m and less rapidly above 1,750m. Dew point=5℃ DALR=10℃/1km SALR=5℃ Condensation level Dew point  Dew-point is reached at 1,500m  Condensation process takes place with the changing of water vapour into water droplets.  The development of rain clouds with a thickness of 2,100m  Freezing process ocurs with formation of ice crystals if freezing temperature is reached. Dew point  The coalescence of water droplets and ice crystals may induce precipitation Stability of air  Below 1,700m, the rising air parcel is colder, and hence denser, than its surrounding air. There is a tendency for the rising air to sink back to ground level. The air parcel is said to be stable.  The temperature inversion reinforces the stable condition. Stability of air  As condensation process occurs at 1,500m with the release of latent heat, the rising air parcel cools less rapidly at the SALR.  From 1,700m upwards, the air parcel becomes warmer, and hence lighter, than its surrounding environment. It will become unstable and will continue to rise its own buoyancy Stability of air  As a general, the rising air parcel is said to be conditionally unstable since it is stable when it is unsaturated but becomes unstable when saturated. Natural mechanism lead to uplift  Air movement encountering mountian barrier  Meeting of air masses with different properties along frontal surface  Convection uplift due to local heating  Convergence of air masses at a lower pressure zone Uplift in a highly urbanized environment  Urban heat island promotes convective turbulence and the upward movement of air  Surface roughness due to the presence of high buildings enhances vertical air motion Urban Heat Island 22℃ 24℃ 26℃ 28℃  Urban heat island encourages condensation and cloud formation  However, high pressure in surrounding rural areas leads to closed circulation  Pollutants in urban can hardly diffused  Pollutants together with fog and cloud leads to the formation of smog  Pollution induced temperature inversion create stable condition which hinders diffusion of pollutants