Download VDD -VSS

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Differential Amplifiers and
common mode feedback
Differential amplifiers
• Cancellation of common mode signals
including clock feed-through
• Cancellation of even-order harmonics
• Increased signal swing
Symbol:
Two-Stage, Miller, Differential-In,
Differential-Out Op Amp
peak-to-peak
output voltage
≤ 2·OCMR
Output common mode range (OCMR)
= VDD-VSS - VSDPsat - VDSNsat
Two-Stage, Miller, Differential-In, DifferentialOut Op Amp with Push-Pull Output
Able to actively source and sink output current
Output quiescent current poorly defined
Cascode Op Amp with DifferentialOutputs, push-pull output
Differential-Output, FoldedCascode
OCMR = VDD -VSS - 2VSDP(sat) -2VDSN(sat)
Quite limited
Two-Stage, Differential Output,
Folded-Cascode
M11-M13 and M10-M12 provide level shift
Common Mode Output Voltage
Stabilization
Common mode
drift at output
causes differential
signals move into
triode region
Common Mode feedback
• All fully differential amplifier needs CMFB
• Common mode output, if uncontrolled,
moves to either high or low end, causing
triode operation
• Ways of common mode stabilization:
– external CMFB
– internal CMFB
Cause of common mode problem
Unmatched quiescent currents
Vbb
I2
Vo1
Vin
Vbb=VbbQ+Δ
Vin=VinQ
Vbb=VbbQ
Vo2
I1
Vo1Q
Vin=VinQ+ΔVin
Vo1
actual Q point
M2 is in triode
If Vo  VOCM  I y i.e.  Vyy
If Vo  VOCM  I y i.e.  Vyy
Vxx
Ix
Vo
VOCM
Vin
Ix(Vo)
Iy(Vo)
Vyy
Iy
Vo
needneg. feedbackfromVo to V yy
Basic concept of CMFB:
Vo+ +Vo-
Vo+
CM
Vo-
Dvb
2
measurement
Voc
CMFB
e
VoCM
+
desired
common mode
voltage
Basic concept of CMFB:
Vo+ +Vo-
Vo+
CM
Vo-
Dvb
2
measurement
Voc
CMFB
e
e
VoCM
+
Find transfer function from e to Voc, ACMF(s)
Find transfer function from an error source to Voc Aerr(s)
Voc error due to error source: err*Aerr(0)/ACMF(0)
example
Vb2
CC
Vi+
CC
Vi- Vo+
VCMFB
Vo-
Vb1
VCMFB
Voc
+
Vo+
Vo-
Example
Voc
?
?
VoCM
Need to make sure to have negative feedback
VDD
M7A
75/3
150/3 M2A
150/3 M2B
BIAS4
300/3
300/3
M13A
M13B
1.5pF 1.5pF
M7B
75/3
averagerOUT-
M3B
BIAS3
OUT+
300/2.25
300/2.25
M6C
20K
M3A
20K
300/2.25
300/2.25
75/2.25
INM6AB
75/2.25
IN+
M1A
Source
M12B
M12A
1000/2.25
1000/2.25
follower
M1B
200/2.25
BIAS2
M11
150/2.25
M10
CL=4pF
4pF
M9A
50/2.25
M9B
50/2.25
M4A
50/2.25
M4B
50/2.25
BIAS1
M8
150/2.25
200/2.25
M5
VSS
Folded cascode amplifier
Resistive C.M. detectors:
Vo+
R1
R2
Vo-
Vo   Vo 
, if R1  R2
2
Prob : resistive loading effect.
use R1 , R2 very large
- difficult to achieve
- especially when Vo is
at an cascoded node
Resistive C.M. detectors:
Vo.c.
Vo+
Vi+
R1
R1
Vo-
Vi-
• O.K. if op amp is used in a resistive
feedback configuration
• & R1 is part of feedback network.
• Otherwise, R1 becomes part of g0 & hence
reduces AD.C.(v)
Buffer Vo+, Vo- before connecting to R1.
Voc
Vo+
VoR1
R1
Simple implementation:
source follower
Vo+
Vo.c.
* Gate capacitance is your load to Amp.
Vo-
Why not:
Vo+
Vo.c.
Vo-
* Initial voltage on cap.
C1
C2
Vo   Vo 
, if C1  C 2
2
Prob : at high freq.
AC diff short
Use buffer to isolate Vo node:
gate cap is load
or resistors
Switched cap CMFB
Vo+
Vo-
Φ1
Φ2
Φ1
VoCM.
VoCM.
To increase or decrease the C.M. loop gain:
e.g.
Vo.c.
Vo.c.d.
Vo.c.
Vo.c.d.
VC.M.F.B.
VC.M.F.B.
Another implementation
• Use triode transistors to provide isolation
& z(s) simultaneously.
M1, M2 in deep triode.
VGS1, VGS2>>VT
Voc
Vo+
VoM1
can be a c.s.
M2
In that case, circuit above M1,
M2 needs to ensure that M1, M2
are in triode.
Vo   Vo 
2
deep triode oper
Example:
Input state
Vo-
Vb
M1
M2
e.g. Vo+, Vo-≈2V at Q & Vb ≈1V ,
Then M1&2 will be in deep triode.
Vo+
If Vo  ,Vo  
Vo-
Vo+
 Voc 
 VG1 ,VG 2 
Vb1
 RM 1 , RM 2 
Vb2
VX
M1 M2
 V X  ( I  const )
but V X to Vo  ,Vo 
is cascoded C.G.
 Vo  ,Vo  
Two-Stage, Miller, Differential-In, DifferentialOut Op Amp
M10 and M11 are in deep triode
Vo++ Vo2
VoCM.
VCMFB
Vo   Vo 
 VCMFB
2
gain can be large
Vo+
Vo-
Note the difference
from the book
accommodates much
larger VoCM range
Small signal analysis of CMFB
Example:
IB
M3
Vo+
M1
M4
IB
M2
-Δi
Vo-
+Δi
+Δi
M5
+Δi
-Δi
VCM
+Δi
VCMFB
Δi=0
2Δi
-Δi
-Δi
• Differential Vo: Vo+↓ by ΔVo, Vo-↑ by ΔVo
• Common mode Vo: Vo+↑ by ΔVo, Vo-↑ by ΔVo
DVo
Di  g m1
2
1
DVCMFB 
 2Di
g m5
 k  DVo
g m1  g m 2  g m3  g m 4 

g m1 
 k 

g m5 

IB
M3
Vo+
M1
VCM
M4
IB
Vo-
M2
+Δi
+Δi
M5
-Δi
-Δi
VCMFB
Δi=0
2Δi
Δi7 M7
+
-2Δi
M6
-
1
-2Δi
gm6
To increase gain :
1
DVG 7  2Di
g m6
Di7  DVG 7 g m 7
g m7
 2Di
g m6
 g m7 

 Di5  2Di1 
 g m6 
g m1  g m 7 
1 
DVo
DVCMFB 
g m5  g m6 
* gain by geometric ratios  can be made accurate
CMFB loop gain: example
Vb2
CC
Vi+
CC
Vi- Vo+
VCMFB
Vo-
Vb1
VCMFB
Voc
+
Vo+
Vo-
gain from VCMFB  Voc 
Vo   Vo 
2
-gm5vro2
-gm5vro2gm6
Vo
gm5v
v
Poles: p1
p2
z1 same as before
Aocmc
g m5 g m 6

g ds 2 g ds6  g ds7 
VDD
M7A
75/3
150/3 M2A
150/3 M2B
BIAS4
300/3
300/3
M13A
M13B
1.5pF 1.5pF
M7B
75/3
averagerOUT-
M3B
BIAS3
OUT+
300/2.25
300/2.25
M6C
20K
M3A
20K
300/2.25
300/2.25
75/2.25
INM6AB
75/2.25
IN+
M1A
Source
M12B
M12A
1000/2.25
1000/2.25
follower
M1B
200/2.25
BIAS2
M11
150/2.25
M10
CL=4pF
4pF
M9A
50/2.25
M9B
50/2.25
M4A
50/2.25
M4B
50/2.25
BIAS1
M8
150/2.25
200/2.25
M5
VSS
Folded cascode amplifier
Removing the CM measurement
Vo+
VoCM
VoVCMFB
Directly connect Vo+, Vo- to the gates of
CMFB diff amp.
VDD=+1.65V
M11
M12
M3
M4
Vo1
M27
M21 M22
M23 M24
Vo2
M1C
M2C
IDC=100υA
VCM
Vi1
M14
M26
M13
M1
M51
M2
M52
-VSS=-1.65V
Vi2
M25
CMFB with current feedback
M3
M4
Vo+
Vo-
M1
IB
CM
Voc
detect
M2
VoCM
M6
M7
M5
VDD  VSS
IB
desired Q : I 3   I1 ,VoCM 
4
2
If Vo   Vo   by DVo , Voc  by DVo
Di1 , Di2  by DVo  g m 6
(equivalen t to VG1 , VG 2  by DVo )