Download Complex Numbers and Functions

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Series (mathematics) wikipedia , lookup

Fundamental theorem of calculus wikipedia , lookup

Function of several real variables wikipedia , lookup

Transcript
Many engineering problems can be treated and solved by using complex numbers and complex
functions. We will look at complex numbers, complex functions and complex differentiation.
Part I Complex Numbers
In algebra we discovered that many equations are not satisfied by any real numbers. Examples
are:
x 2  2
x 2  2 x  40  0
or
We must introduce the concept of complex numbers.
Definition: A complex number is an ordered pair z  ( x, y ) of real numbers x and y. We call x
the real part of z and y the imaginary part, and we write
Re z  x ,
Example 1: Re(4,6)  4
and
Im z  y .
Im(4,6)  6
Two complex numbers are equal where z1  ( x1, y1 ) and z2  ( x2 , y2 ) :
z1  z2 if and only if x1  x2 and y1  y2
Addition and Subtraction of Complex Numbers: We define for two complex numbers, the
sum and difference of z1  ( x1, y1 ) and z2  ( x2 , y2 ) :
z1  z2  ( x1  x2 , y1  y2 ) and z1  z2  ( x1  x2 , y1  y2 ) .
Multiplication of two complex numbers is defined as follows:
z1z2  ( x1x2  y1 y2 , x1 y2  x2 y1 )
Example 2: Let z1  (3, 4) and z2  (5, 6) then
z1  z2  (3  5,4  (6))  (8, 2)
and
z1  z2  (3  5,4  (6))  (2,10)
and
z1z2  (3  5  4  (6),3  (6)  4  5)  (39,2) .
We need to represent complex numbers in a manner that will make addition and multiplication
easier to do.
1
Complex numbers represented as z  x  iy
A complex number whose imaginary part is 0 is of the form ( x,0) and we have
( x1,0)  ( x2 ,0)  ( x1  x2 ,0) and ( x1,0)  ( x2 ,0)  ( x1  x2 ,0)
and
( x1,0)  ( x2 ,0)  ( x1x2 ,0)
which looks like real addition, subtraction and multiplication. So we identify ( x,0) with the real
number x and therefore we can consider the real numbers as a subset of the complex numbers.
We let the letter i  (0,1) and we call i a purely imaginary number.
Now consider i 2  i  i  (0,1)  (0,1)  (1,0) and so we can consider the complex number
i 2  1 = the real number 1 . We also get yi  y  (0,1)  (0, y )
And so we have:
( x, y )  ( x,0)  (0, y )  x  iy
Now we can write addition and multiplication as follows:
z1  z2  ( x1  x2 , y1  y2 )  x1  x2  i( y1  y2 )
and
z1z2  ( x1x2  y1 y2 , x1 y2  x2 y1 ) = x1x2  y1 y2  i( x1 y2  x2 y1 ) .
Example 3: Let z1 = (2,3)= 2 +3i and z 2 = (5,-4) = 5 -4i , then
z1  z2  (2  3i)  (5  4i)  7  i
and
z1  z2  (2  3i )  (5  4i )  10  15i  8i  12i 2  22  7i
The Complex Plane
The geometric representation of complex numbers is to represent the complex number ( x, y ) as
the point ( x, y ) .
y-axis
x  iy
2
1
1
2
x-axis
(2, 3)  2  3i
2
So the real number ( x,0) is the point on the horizontal x-axis, the purely imaginary number
yi  (0, y ) is on the vertical y-axis. For the complex number ( x, y ) , x is the real part and y is
the imaginary part.
Example 4. Locate 2-3i on the graph above.
How do we divide complex numbers? Let’s introduce the conjugate of a complex number then
go to division.
Given the complex number z  x  iy , define the conjugate z  x  iy  x  iy
We can divide by using the following:
z1 x1  iy1 x1  iy1 x2  iy2 x1 x2  y1 y2  i ( x2 y1  x1 y2 )



z2 x2  iy2 x2  iy2 x2  iy2
x22  y22
Example 5.
2  3i (2  3i)(3  4i) 6  12i 2  8i  9i
6
17


  i
2
3  4i (3  4i)(3  4i)
9  16i
25 25
Problem Set I
Find
1. i 2
2. i 3
3. i 4
4. i 21
5. i 1
6. i 2
7. i 3
8. i 4
9. i 24
Let z1  5  6i and z2  3  2i and z3  1  3i , find
10. z1  z2  z3
13. z1 z2
Graph the following:
11. 2 z2  3z1
z
14. 1
z3
16. 2  i
17. i
19. Find the solutions of
x 2  2 .
20. Find the solution of
x 2  2 x  40  0 .
12. z3  z 2
i
15.
z2
18. 1  3i and its conjugate.
Complex Numbers in Polar Form
It is possible to express complex numbers in polar form. If the point z  ( x, y )  x  iy is
represented by polar coordinates r ,  , then we can write x  r cos , y  r sin  and
3
z  r cos  ir sin   rei . r is the modulus or absolute value of z, | z | r  x 2  y 2 , and  is
z
2
 y
the argument of z,   arctan   . The values of r and  determine z uniquely, but the
x
converse is not true. The modulus r is determined uniquely by z, but  is only determined up to a
multiple of 2. There are infinitely many values of  which satisfy the equations
x  r cos , y  r sin  , but any two of them differ by some multiple of 2. Each of these angles
 is called an argument of z, but, by convention, one of them is called the principal argument.
If z is a non-zero complex number, then the unique real number , which satisfies
x  z cos , y  z sin  ,      
is called the principal argument of z, denoted by   arg( z ) .
Definition
Note: The distance from the origin to the point ( x, y ) is z , the modulus of z; the argument of z
is the angle   arctan
y
. Geometrically,  is the directed angle measured from the positive xx
axis to the line segment from the origin to the point ( x, y ) . When z  0 , the angle  is
undefined.
The polar form of a complex number allows one to multiply and divide complex number
more easily than in the Cartesian form. For instance, if z1  r1ei1 and z2  r2ei2 then
z1 z2  r1r2ei (1 2 ) ,
z1 r1 i (1 2 )
 e
. These formulae follow directly from DeMoivre’s formula.
z2 r2
zz
1
y
2
 
1
z
2
1

1

2
x
4
Example 6. For z  1  i , we get r  12  12  2 and   arctan
principal value of  is

9
, but
would work also.
4
4
y

 arctan1  . The
x
4
Multiplication and Division in Polar Form
Let z1  r1 cos1  ir1 sin 1  r1 (cos1  i sin 1 ) and z2  r2 (cos2  i sin 2 ) then we have
z1z2  r1r2 (cos(1  2 )  i sin(1  2 ))
and
z1 r1
 (cos(1   2 )  i sin(1   2 ))
z2 r2






z2  3  i  2  cos  i sin 
Example 7: z1  1  i  2  cos  i sin  and
4
4
6
6



 


5
5 


 i sin
Then z1z2  2  cos  i sin  2  cos  i sin  = 2 2  cos

4
4 
6
6
12
12 


  10 5

Since  
4 6
24 12
And
z1
=
z2



2  cos  i sin 
2

 
4
4

=
cos  i sin 




2 
12
12 
2  cos  i sin 
6
6

We can use z 2  z  z  r  r (cos(   )  i sin(   ) = r 2 (cos 2  i sin 2 )
And so:
DeMoivre's Theorem:
z n  r n (cos n  i sin n )
where n is an positive integer.
5
Let r  1 to get:
(cos  i sin  )n  cos n  i sin n .
Example 8: Compute (1  i)6
1  i 
6
 

 
  2  cos  i sin  
4
4 
 
6
6


 2  cos 6   i sin 6  
4
4

3
3 

 8  cos
 i sin

2
2 

 8i
Roots of Complex Numbers:
Consider z  r (cos  i sin  ) = wn  R n (cos n  i sin n )
(Equation 1)
where w  R(cos   i sin  ) . Then R  n r , and so   n or  
However n    2 also satisfies Equation 1 and so  



n
.
2
. And
n
n
4
 6
n    4 implies   
. However n    6 implies   
.
n n
n n

And continuing n    k implies  
We get
n

n

k
. for k any integer up to n.
n

   k 2 ) 
   k 2 )  
z  n x  cos 
  i sin 
,
n
n





Example 9:
k=0, 1, 2, 3,
, (n-1).
Find the square roots of i.
 
 
Since i  cos    i sin   , we let
2
2



1
1
1  
 1  
w1  1  cos     i sin      cos  i sin 
i
is one square root of i . The
4
4
2
2
2 2
 2 2 

second square root of i is :

5
5
1
1




w1  1  cos      i sin       cos
 i sin

i
.
4
4
2
2
4

4


6
Example 10. Find the sixth root of 1.
There will be six roots:

3 1
 
  
z1  6 1  cos    i sin    
 i
6
 6  2 2


  2
z2  6 1  cos  
6 6


  2  
  i sin  
  i

 6 6 

  4 
  4
z3  6 1  cos  
  i sin  
6 6 
6 6


  6
z4  6 1  cos  
6 6

3 1

 i
  
2 2

3 1

  6  
 i
  i sin  
  
2 2

 6 6 

  8 
  8  
z5  6 1  cos  
  i sin  
   i
6 6 
 6 6 


3 1
  10 
  10  
z6  6 1  cos  
 i
  i sin  
  
6 
6 
2 2
6
6

7
Example 11: Compute
4
4i
3
3 

4  cos
 i sin  = 2(cos   i sin  )
2
2 

(3  k  2 )
3 7 11 15
,
,
,
Where  
. So  
24
8 8 8
8
Solution:
4
4
4i =
4

 3 
 3  
4i  2  cos    i sin     2(0.3827  0.9239i)
 8 
 8 


 7 
 7  
= 2  cos 
  i sin 
   2(0.9239  0.3827i)
 8 
 8 


 11 
 11  
 2  cos 
  i sin 
    2(0.3827  0.9239i)
 8 
 8 


 15 
 15  
 2  cos 
  i sin 
   2(0.9239  0.3827i) .
 8 
 8 

Problem Set II
Write in polar form:
1. 3i
2. 2  2i
2  3i
3.
Write in rectangular form:
3
3 

 i sin
4. 32  cos

4
4 

5. 3(cos   i sin  )
7. Find (2  2i) 4
8. Find
9. Find 4 16  16i
10. Find

3 i
5

5
32
8
6.



2  cos  i sin 
4
4

Part II Functions, Neighborhoods and Limits
We consider the concept of a function of a complex number. For y  f ( x)  x 2 , where x and y
are real numbers, we know about limits, continuity and derivatives. Let the complex number
w  f ( z )  z 2 , where z  x  iy and w  ( x  iy)2  x 2  y 2  2 xyi . Here x and y are independent
variables and w  u  iv where u  x 2  y 2 and v  2 xy . This is an example of a complex
valued function, w, of a complex variable z. In general, let
w  u  iv
where u  u ( x, y ) and v  v( x, y ).
w
z
Distance in the complex plane.
In the complex plane let z1  x1  iy1 and z2  x2  iy2 then
| z1  z2 | ( x1  x2 )2  ( y1  y2 )2
is the distance between the complex numbers z1 and z2 Note that | z | x 2  y 2 is the distance
from the origin to z.
Definition: A neighborhood N ( z0 , r ) of the point z0 in the complex plane is the set of points z
where r  0 and {z | z  z0 | r}
Definition: A function w  f ( z ) is said to have a limit L as z approaches z0 ( and written
lim f ( z)  L ) iff f ( z ) is defined in a neighborhood N ( z0 , r ) , r  0 except at z0 and the
z z0
values of f are close to L for all z close to z0 . Mathematically: for every   0 , we can find
  0 such that for all z  z0 in the neighborhood N ( z0 , r ) , so that if 0 | z  z0 |  , then
| f ( z )  L |  .
Notice that this definition of a limit is similar to the definition in calculus. The difference here is
that z can approach z0 from any direction in the complex plane.
Definition: A function w  f ( z ) is continuous at z  z0 if f ( z0 ) is defined and lim f ( z)  L .
z z0
By definition a complex function that is continuous at z0 is defined in a neighborhood of z0 .
f ( z ) is continuous in a domain D if it is continuous at each point in the domain D.
9
The derivative of a function f ( z ) at a point z is defined as:
f '( z )  lim
h0
f ( z  h)  f ( z )
h
provided that limit exists.
Example 12: Let f ( z )  z 2 . To compute f '( z ) we consider
( z  h) 2  z 2
z 2  2 zh  h 2  z 2
2 zh  h 2
 lim
 lim
 lim(2 z  h)  2 z
h0
h0
h0
h0
h
h
h
lim
The rules for derivatives are the same for calculus:
(cf ) '  cf ' c=constant
( f  g ) '  f ' g '
( fg ) '  f ' g  fg '
 f 
f ' g  fg '
 ' 
g2
g
Definition: A function f ( z ) is defined to be analytic in the domain D if f ( z ) is defined and has
a derivative at all points of D.
The Exponential Function e z
The definition of the exponential function e z  e xiy  e xeiy is given in terms of the real functions
e x , sin y , and cos y.
e z  e xiy  e xeiy  e x (cos y  i sin y )
To show why this is true, consider the power series expansion: e x = 1  x 
x 2 x3
xn
     
2! 3!
n!
and substitute iy for x, to get:
(iy)2 (iy)3
(iy) n
e  1  iy 

  
  = 1  iy 
2!
3!
n!
 y2 y4 y6
 
y3 y5
eiy = 1  
    + i  y   
2! 4! 6!
3! 5!

 
iy
10
y 2 iy 3
(iy )n

  
 
2! 3!
n!

y7
   = cos y  i sin y .
7!

The formula
e z  e xiy  e x (cos y  i sin y) is known as Euler’s formula.
Theorem:
e z is never zero.
Proof: e z  e  z  e0  1 , therefore, e z cannot be zero.
If y is real, then eiy  1 .
Theorem:
2
Proof: eiy  cos 2 y  sin 2 y  1 and eiy  0 , which implies eiy  1 .
Theorem:
e z  1 if and only if z  2n i , where n is an integer.
Proof: If z  2n i , e z  cos 2n  i sin 2n  1 . Conversely, suppose e z  1 , then
e x cos y  1, e x sin y  0 . Since e x  0 , this implies sin y  0 ; and y  k where k is an integer.
Substituting this into e x cos y  1 implies e x (1)k  1 . Hence k is even, since e x  0 . Therefore,
e x  1 and x  0 .
Theorem:
e z1  e z2 if and only if z1  z2  2n i , where n is an integer.
Proof: e z1  e z2 if and only if e z1  z2  1 . Then use the previous theorem.
Definition of sin z and cos z
To get the definitions of sin z and cos z we substitute  y for y in Euler’s Formula to get:
 y2 y4 y6
 

y3 y5 y 7
e  iy = 1  
    + i   y       = cos y  i sin y .
2! 4! 6!
3! 5! 7!

 

Adding eiy and e  iy together and dividing by 2, we get:
eiy  eiy
 cos y .
2
Subtracting e
 iy
eiy  eiy
from e , and dividing by 2i , we get: sin y 
.
2i
We now define sin z 
iy
eiz  eiz
2i
and
cos z 
11
eiz  eiz
.
2
Substitute ix for y in cos y 
eiy  eiy
e x  e x
to get cos(ix) 
 cosh x .
2
2
Similarly we get sin(ix)  i sinh x .
Facts:
1. For z  x  0i , to get e z  e xi 0  e x
2. The derivative of e z is e z .
3. e z1 z2  e z1 e z2
4. For z  iy we get eiy  cos y  i sin y .
5. In polar form z  x  iy  r (cos  i sin  )  rei .
6. It now follows that e z 2 i  e z e 2 i  e z 1  e z .
7. e i  1
8. cosh z 
e z  e z
2
sinh z 
9. sin 2 z  cos 2 z  1
e z  e z
2
sin( z )   sin z
cos( z )  cos z
Logarithmic Functions
If z  e w then we write w  ln z , called the natural logarithm of z. Thus the natural logarithm
function is the inverse of the exponential function and can be defined by
w  ln z  ln r  i(  2  k ) where k  0, 1, 2, 3, 
where z  rei  rei 2 i .
So we have that w  ln z is multiple-valued, and in fact is infinitely many-valued. If we let
k  0 then w  ln z  ln r  i(  2  k )  ln r  i , where 0    2 called the principal value or
principal branch of ln z .
To find the values of ln(1  i ) , let z  e w , where z  rei  r (cos  i sin  ) and so
w  u  iv which implies z  euiv  eu (cos v  i sin v) .
12
We equate the real and imaginary parts:
(2) eu cos v  r sin 
(1) eu cos v  r cos 
Squaring (1) and (2) and adding, we find e 2u  r 2
or eu  r . Thus, from (1) and (2),
r cos v  r cos
r sin v  r sin
and so v    2k .
Hence we have
w  u  iv  ln r  i (  2k )
Example 13: Compute ln(1  i ).
Since 1  i  2e 1  i  2e
7 i
 2 k i
4
, we have
7 i
 7 i
 1
ln(1  i )  ln 2  
 2k i   ln 2 
 2 k i
4
 4
 2
1
7 i
The principle value is ln 2 
(let k  0 ).
2
4
Problem Set III.
Sketch the point sets defined by the following
1. | z  1| 2
2. | z  2 | 3
3. | z  1  i | 2
Show that
4. sin z  sin( z )
5. cosh z  cosh( z ) 6. (e z )2  e2 z
Evaluate each of the following
7. e 2 i
8. ei 1

9. sin(3   i ) 10. e 2
i
11. cos  i
Find all possible values of ln z :
12. ln 2i
13. ln(9)
14. ln(1  2i )
15. ln(i 3 )
16. ln(1  i )
17. ln(1)
18. cos(2  3 i)
19. sec(1  i ) 
1
cos(1  i )
20 Show that e z  1 if and only if z  2n i where n is any integer.
13