Download AgenaRisk

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Neural modeling fields wikipedia , lookup

Time series wikipedia , lookup

Catastrophic interference wikipedia , lookup

Convolutional neural network wikipedia , lookup

Pattern recognition wikipedia , lookup

Hierarchical temporal memory wikipedia , lookup

Transcript
Bayesian Net References
Version 4
13 July 2008
This document contains a list of references to publications and
reports about Bayesian Net technology, and especially Bayesian
Net applications. The report will be regularly updated and we
welcome suggestions for new references to be added. Please send
new references for inclusion to [email protected]
Agena Limited
32-33 Hatton Garden
London EC1N 8DL
UK
1.
Abdel-Hamid, T. K. (1996). The slippery path to productivity improvement.
IEEE Software, 13(4), 43-52
2.
Abderrahim, D., L. Bernard, et al. (2006). TIDES - Using Bayesian Networks for
Student Modeling. Proceedings of the Sixth IEEE International Conference on
Advanced Learning Technologies, IEEE Computer Society: 1002 - 1007
3.
Abramson, B. (1994). "The design of belief network-based systems for price
forecasting." Computers & Electrical Engineering 20(2): 163-180
4.
Abramson, B., J. Brown, et al. (1996). "HAILFINDER: A Bayesian system for
predicting extreme weather." International Journal of Forecasting 7: 57-78
5.
Ackerman, F. and C. Eden (2005). "Using Causal Mapping with Group Support
Systems to Elicit an Understanding of Failure in Complex Projects: Some
Implications for Organizational Research." Group Decision and Negotiation 14:
355–376
6.
Ackermann, F., C. Eden, et al. (1997). "Modeling for Litigation: Mixing
Qualitative and Quantitative Approaches." Interfaces 27: 48-65
7.
Aires, F., C. Prigent, et al. (2004). "Neural network uncertainty assessment using
Bayesian statistics: a remote sensing application." Neural Comput 16(11): 241558
8.
Aitken, C. (1996). "Lies, damned lies and expert witnesses." Mathematics Today
(Bulletin of the IMA) 32(5/6): 76-80
9.
Aitken, C., F. Taroni, et al. (2003). "A graphical model for the evaluation of
cross-transfer evidence in DNA profiles." Theoretical Population Biology 63:
179-190
10.
Aitken, C. G. G. (2004 ). Statistical interpretation of evidence: Bayesian
analysis, Joseph Bell Centre for Forensic Statistics & Legal Reasoning
http://www.cfslr.ed.ac.uk/publications/a001.pdf.
11.
Aitken, C. G. G., T. Connolly, et al. (1995). Bayesian belief networks with an
application in specific case analysis. Computational Learning and Probabilistic
Reasoning. A. Gammerman, John Wiley and Sons Ltd.
12.
Aitken, C. G. G., T. Connolly, et al. (1996). "Statistical modelling in specific
case analysis." Science & Justice: 36(4): 245-255
13.
Aktaşa, E., F. Ülengin, et al. (2007). "A decision support system to improve the
efficiency of resource allocation in healthcare management." Socio-Economic
Planning Sciences 41(2): 130-146
14.
Aliferis, C. F. and G. F. Cooper (1996). An Evaluation of an Algorithm for
Inductive Learning of Bayesian Belief Networks Using Simulated Data Sets.
Section of Medical Informatics & Intelligent Systems Program,University of
Pittsburg
15.
Aliferis, C. F. and G. F. Cooper (1996). A Structurally and Temporally Extended
Bayesian Belief Network Model: Definitions, Properties, and Modelling
Techniques. [email protected]
16.
Alterovitz, G., M. Xiang, et al. (2007). "GO PaD: the Gene Ontology Partition
Database." Nucleic Acids Res 35(Database issue): 322-7
17.
Alvarez, S. M., B. A. Poelstra, et al. (2006). "Evaluation of a Bayesian decision
network for diagnosing pyloric stenosis." J Pediatr Surg 41(1): 155-61;
discussion 155-61
18.
Amasaki, S., O. Mizuno, et al. (2003). A Bayesian Belief Network for Predicting
Residual Faults in Software Products. Proceedings of 14th International
Symposium on Software Reliability Engineering (ISSRE2003), November, pp.
215-22
19.
An, X., D. Jutla, et al. (2006). Privacy intrusion detection using dynamic
Bayesian networks. Proceedings of the 8th international conference on
Electronic commerce: The new e-commerce: innovations for conquering current
barriers, obstacles and limitations to conducting successful business on the
internet. Fredericton, New Brunswick, Canada, ACM: 208 - 215
20.
Anderson, S. K., K. G. Olesen, et al. (2000). HUGIN - a shell for building
Bayesian belief universes for expert systems. 11th Intl Joint Conf Artifical
Intelligence. Detroit: 1080-1085
21.
Andreassen, M. Woldbye, et al. (1987). MUNIN: a causal probabilistic network
for interpretation of electromyographic findings. 10th International Joint
Conference on Artificial Intelligence. Milan, Italy: 366-372
22.
Andreassen, S., F. Jensen, et al. (1991). "Medical expert systems based on causal
probabilistic networks." Int J Biomed Comput 28(1-2): 1-30
23.
Andreassen, S., C. Riekehr, et al. (1999). "Using probabilistic and decisiontheoretic methods in treatment and prognosis modeling." Artif Intell Med 15(2):
121-34
24.
Antal, P., G. Fannes, et al. (2003). "Bayesian applications of belief networks and
multilayer perceptrons for ovarian tumor classification with rejection." Artif
Intell Med 29(1-2): 39-60
25.
Antal, P., G. Fannes, et al. (2004). "Using literature and data to learn Bayesian
networks as clinical models of ovarian tumors." Artif Intell Med 30(3): 257-81
26.
Arens, D. A. (1982). "Widowhood and well-being: an examination of sex
differences within a causal model." Int J Aging Hum Dev 15(1): 27-40
27.
Aronsky, D., M. Fiszman, et al. (2001). "Combining decision support
methodologies to diagnose pneumonia." Proc AMIA Symp: 12-6
28.
Aronsky, D. and P. J. Haug (1998). "Diagnosing community-acquired
pneumonia with a Bayesian network." Proc AMIA Symp: 632-6
29.
Aronsky, D. and P. J. Haug (2000). "Automatic identification of patients eligible
for a pneumonia guideline." Proc AMIA Symp: 12-6
30.
Astakhov, V. and A. Cherkasov (2005). "Prediction of HLA-A2 binding peptides
using Bayesian network." Bioinformation 1(2): 58-63
31.
Athanasiou, M. and J. Y. Clark (2007). A Bayesian Network Model for the
Diagnosis of the Caring Procedure for Wheelchair Users with Spinal Injury.
Twentieth IEEE International Symposium on Computer-Based Medical Systems
(CBMS'07) 433-438
32.
Bacon, P. J., J. D. Cain, et al. (2002). "Belief network models of land manager
decisions and land use change." Journal of Environmental Management 65(1): 123
33.
Bahrami, H. (2006). "Causal models in primary open angle glaucoma."
Ophthalmic Epidemiol 13(4): 291-8
34.
Bai, C.-G. (2005). "Bayesian network based software reliability prediction with
an operational profile." J. Syst. Softw. 77(2): 103-112
35.
Bai, C. G., Q. P. Hu, et al. (2005). "Software failure prediction based on a
Markov Bayesian network model." J. Syst. Softw. 74(3): 275-282
36.
Baker, M. (2000). Diagnostic system utilizing a Bayesian network model having
link weights updated experimentally. Patent number: 6076083
37.
Bang, J. W. and D. Gillies (2002). Using Bayesian Networks to Model the
Prognosis of Hepatitis C. In 7th Workshop on Intelligent Data Analysis in
Medicine and Pharmacology, pages 7.15, Lyon, France
38.
Bang, J. W. and D. Gillies (2002). Using Bayesian Networks with Hidden Nodes
to Recognise Neural Cell Morphology. In M. Ishizuka and A. Satter, editors, 7th
Pacific Rim International Conference on Arti_cial Intelligence, pages 385.394,
Tokyo, New York,. Springer
39.
Bangsø, O. and P. H. Wuillemin (2000). Top-down construction and repetitive
structures representation in Bayesian networks. Proceedings of The Thirteenth
International Florida Artificial Intelligence Research Symposium Conference.
Florida, USA: 282-286
40.
Barahona, P. (1994). "A causal and temporal reasoning model and its use in drug
therapy applications." Artif Intell Med 6(1): 1-27
41.
Barker, G. C. (2004). Application of Bayesian Belief Network models to food
safety science
42.
Batchelor, C. and J. Cain (1999). "Application of belief networks to water
management studies." Agricultural Water Management 40(1): 51-57
43.
Bate, A. (2007). "Bayesian confidence propagation neural network." Drug Saf
30(7): 623-5
44.
Bate, A., M. Lindquist, et al. (1998). "A Bayesian neural network method for
adverse drug reaction signal generation." Eur J Clin Pharmacol 54(4): 315-21
45.
Bate, A., M. Lindquist, et al. (2002). "A data mining approach for signal
detection and analysis." Drug Saf 25(6): 393-7
46.
Bate, A., M. Lindquist, et al. (2002). "Data-mining analyses of
pharmacovigilance signals in relation to relevant comparison drugs." Eur J Clin
Pharmacol 58(7): 483-90
47.
Bauer, E., D. Koller, et al. (1997). Update rules for parameter estimation in
Bayesian networks. In Geiger D. and Shenoy P. (Eds.) Proceedings of the
Thirteenth Conference on Uncertainty in Artificial Intelligence, Morgan
Kaufmann Publishers Inc., San Francisco, pp. 3-13
48.
Bayesware. (2007). "Bayesware Knowledge Discovery by Bayesian Networks."
49.
http://www.bayesware.com/.
50.
Beach, B. (1975). "Expert judgment about uncertainty: Bayesian decision
making in realistic settings." Organ Behav Hum Perform 14(1): 10-59
51.
Bearfield, G. and W. Marsh (2005). Generalising Event Trees Using Bayesian
Networks with a Case Study of Train Derailment. in Proceedings of the 24th
International Conference on Computer Safety, Reliability and Security,
SAFECOMP 2005, Springer-Verlag, vol. 3688
52.
Beghin, I., A. De Muynck, et al. (1989). "Can the causal model approach
contribute to the study of the epidemiology and the control of sleeping
sickness?" Ann Soc Belg Med Trop 69 Suppl 1: 31-47; discussion 144
53.
Bellamy, S. L., J. Y. Lin, et al. (2007). "An introduction to causal modeling in
clinical trials." Clin Trials 4(1): 58-73
54.
Ben Salem, A., A. Muller, et al. (2006). "Dynamic Bayesian Networks in system
reliability analysis in 6th IFAC Symposium on Fault Detection, Supervision and
Safety of technical processes." 6th IFAC Symposium on Fault Detection,
Supervision and Safety of technical processes, China [hal-00092032 - version 1]
(2006-09-08"
55.
Bernardo, J. A. and A. F. Smith (1994). Bayesian Theory, John Wiley and Sons,
New York.
56.
Bibi, S. and I. Stamelos (2004). Software Process Modeling with Bayesian
Belief Networks. 10th International Software Metrics Symposium (Metrics
2004). Chicago, USA
57.
Biedermann, A., F. Taroni, et al. (2005). "The evaluation of evidence in the
forensic investigation of fire incidents. Part II. Practical examples of the use of
Bayesian networks." Forensic Science International 147(1): 59-69
58.
Birckmayer, J. D., H. D. Holder, et al. (2004). "A general causal model to guide
alcohol, tobacco, and illicit drug prevention: assessing the research evidence." J
Drug Educ 34(2): 121-53
59.
Blackburn, J. D., G. D. Scudder, et al. (1996). Improving speed and productivity
of software development: a global survey of software developers. IEEE
Transactions on Software Engineering, 22(12), 875-885
60.
Blanco, R., I. Inza, et al. (2005). "Feature selection in Bayesian classifiers for the
prognosis of survival of cirrhotic patients treated with TIPS." J Biomed Inform
38(5): 376-88
61.
Bobbio, A., L. Portinale, et al. (2001). "Improving the analysis of dependable
systems by mapping fault trees into Bayesian networks." Reliability Engineering
and System Safety 71(3): 249-260
62.
Bockhorst, J., M. Craven, et al. (2003). "A Bayesian network approach to operon
prediction." Bioinformatics 19(10): 1227-35
63.
Boer, R., S. Plevritis, et al. (2004). "Diversity of model approaches for breast
cancer screening: a review of model assumptions by the Cancer Intervention and
Surveillance Network (CISNET) Breast Cancer Groups." Stat Methods Med Res
13(6): 525-38
64.
Borsuk, M. E., C. A. Stow, et al. (2004). "A Bayesian network of eutrophication
models for synthesis, prediction, and uncertainty analysis." Ecological Modelling
173(2-3): 219-39
65.
Bothtner, U., S. E. Milne, et al. (2002). "Bayesian probabilistic network
modeling of remifentanil and propofol interaction on wakeup time after closedloop controlled anesthesia." J Clin Monit Comput 17(1): 31-6
66.
Bottcher, P., R. Stoddard, et al. (1995). A Bayesian approach for modeling
quality in software products and processes. Proc 5th Int Conf Software Quality,
214-253
67.
Bouckaert, R. R. (1996). A Stratified Simulation Scheme for Inference in
Bayesian Belief Networks. Utrecht University, Department of Computer
Science, P.O.Box 80.089 3508 TB Utrecht, The Netherlands, email:
[email protected]
68.
Boudali, H. and J. B. Dugan (2005). "A discrete-time Bayesian network
reliability modeling and analysis framework." Reliability Engineering and
System Safety 87(3): 337-349
69.
Boudali, H. and J. B. Dugan (2006). "A Continuous-Time Bayesian Network
Reliability Modeling and Analysis framework." IEEE Transactions on
Reliability 55: 86-97
70.
Bouissou, M., F. Martin, et al. (1999). "Assessment of a Safety-Critical System
Including Software: A Bayesian Belief Network for Evidence Sources." "Free.
Ann. Reliability and Maintainability Symp., RAMS"
71.
Boutilier, C., N. Friedman, et al. (1996). "Context-specific independence in
Bayesian networks." "In Proc. 12th UAI, pages 115-123"
72.
Bradford, J., C. Needham, et al. (2006). "Insights into protein-protein interfaces
using a Bayesian network prediction method." J Mol Biol 362(2): 365-86
73.
Brage, D. and W. Meredith (1994). "A causal model of adolescent depression." J
Psychol 128(4): 455-68
74.
Brewer, M. J. (2003). "Discretisation for inference on Bayesian mixture
models." "Statistics and Computing 13, 209-219"
75.
Brown, L. E., I. Tsamardinos, et al. (2004). "A novel algorithm for scalable and
accurate Bayesian network learning." Medinfo 11(Pt 1): 711-5
76.
Bryan, B. and M. Garrod (2006). Combining rapid field assessment with a
Bayesian network to prioritise investment in watercourse protection, CSIRO
Land and Water Science Report 10/06, April,
www.clw.csiro.au/publications/science/2006/sr10-06.pd
77.
Bulashevska, S., O. Szakacs, et al. (2004). "Pathways of urothelial cancer
progression suggested by Bayesian network analysis of allelotyping data." Int J
Cancer 110(6): 850-6
78.
Burden, F. R. and D. A. Winkler (2005). "Predictive Bayesian neural network
models of MHC class II peptide binding." J Mol Graph Model 23(6): 481-9
79.
Burge, J., T. Lane, et al. (2007). "Discrete dynamic Bayesian network analysis of
fMRI data." Hum Brain Mapp
80.
Burnside, E., D. Rubin, et al. (2006). "Bayesian network to predict breast cancer
risk of mammographic microcalcifications and reduce number of benign biopsy
results: initial experience." Radiology 240(3): 666-73
81.
Burnside, E., D. Rubin, et al. (2000). "A Bayesian network for mammography."
Proc AMIA Symp: 106-10
82.
Burnside, E., D. Rubin, et al. (2004). "Using a Bayesian network to predict the
probability and type of breast cancer represented by microcalcifications on
mammography." Medinfo 11(Pt 1): 13-7
83.
Burnside, E. S. (2005). "Bayesian networks: computer-assisted diagnosis support
in radiology." Acad Radiol 12(4): 422-30
84.
Burnside, E. S., D. L. Rubin, et al. (2006). "Bayesian network to predict breast
cancer risk of mammographic microcalcifications and reduce number of benign
biopsy results: initial experience." Radiology 240(3): 666-73
85.
Burnside, E. S., D. L. Rubin, et al. (2004). "Using a Bayesian network to predict
the probability and type of breast cancer represented by microcalcifications on
mammography." Medinfo 11(Pt 1): 13-7
86.
Burnside, E. S., D. L. Rubin, et al. (2004). "A probabilistic expert system that
provides automated mammographic-histologic correlation: initial experience."
AJR Am J Roentgenol 182(2): 481-8
87.
Buxton, H. (1997). "Advanced visual surveillance using Bayesian networks."
"COLLOQUIUM DIGEST- IEE, , ISSUE 74, pages"
88.
Call, C. and P. Gonsalves (2006). Belief Network-based Situation Assessment
for Air Operations Centers. Proceedings of SPIE Defense & Security, Orlando,
FL.
89.
Campos, L. M. d., J. A. Gámez, et al. (2001). "Accelerating chromosome
evaluation for partial abductive inference in Bayesian networks by means of
explanation set absorption." International Journal of Approximate Reasoning,
27(2): 121-142
90.
Canol, R., C. Sordo, et al. (2004). Applications of Bayesian Networks in
Meteorology. Advances in Bayesian Networks. Gamez, Springer: 309-327.
91.
Card, D. (1998). Learning from our mistakes with defect causal analysis. IEEE
Software, 15(1), 56-63
92.
Castillo, E., J. M. Gutierrez, et al. (1997). Sensitivity analysis in discrete
Bayesian networks. IEEE Transactions on Systems, Man and Cybernetics, Part
A, Volume: 27, Issue: 4 , July, 412 - 423
93.
Chakraborty, S., M. Ghosh, et al. (2005). "Bayesian neural networks for
bivariate binary data: an application to prostate cancer study." Stat Med 24(23):
3645-62
94.
Chan, H. and A. Darwiche (2005). "On the Revision of Probabilistic Beliefs
Using Uncertain Evidence." Artificial Intelligence 163(67-90)
95.
Chang, J., K. Hwang, et al. (2005). "Bayesian network learning with feature
abstraction for gene-drug dependency analysis." J Bioinform Comput Biol 3(1):
61-77
96.
Chang, K. C. and Fung (1997). "Target identification with Bayesian networks in
a multiple hypothesis tracking system." OPT. Eng 36(3): 684-691
97.
Charniak, E. (1991). "Bayesian Networks without tears." AI Magazine, AAAI
Winter: 50-6
98.
Chavira, M. and A. Darwiche (2007). Compiling Bayesian Networks Using
Variable Elimination. 20th International Joint Conference on Artificial
Intelligence (IJCAI). Hyderabad, India
99.
Chavira, M., A. Darwiche, et al. (2006). "Compiling Relational Bayesian
Networks for Exact Inference." International Journal of Approximate Reasoning
(IJAR) 42: 4-20
100.
Chen, R. and E. H. Herskovits (2007). "Clinical diagnosis based on bayesian
classification of functional magnetic-resonance data." Neuroinformatics 5(3):
178-88
101.
Chen, X., M. Chen, et al. (2006). "BNArray: an R package for constructing gene
regulatory networks from microarray data by using Bayesian network."
Bioinformatics 22(23): 2952-4
102.
Cheng, J. (2001). Belief Network Powersoft System, University of Alberta,
http://www.cs.ualberta.ca/~jcheng/bnsoft.ht
103.
Cheng, J., D. A. Bell, et al. (1997). "An Algorithm for Bayesian Belief Network
Construction from Data." http://www.cs.ualberta.ca/~jcheng/Doc/aistat97.pdf.
104.
Cheng, P. W. and L. R. Novick (1990). "A probabilistic contrast model of causal
induction." J Pers Soc Psychol 58(4): 545-67
105.
Chickering, D. M. (1996). Learning Bayesian Networks is NP-Complete.
LECTURE NOTES IN STATISTICS SPRINGER VERLAG. 112: 121-130.
106.
Chickering, D. M. and D. Heckerman (1997). ".Efficient, Approximations for
the Marginal Likelihood of Bayesian Networks with Hidden Variables."
MACHINE LEARNING 29(2/3): 181-212
107.
Chien, C.-F., S.-L. Chen, et al. "Using Bayesian network for fault location on
distribution feeder." IEEE Trans Power Delivery 17(13): 785- 793
108.
Chulani, S., B. Boehm, et al. (1998). Calibrating Software Cost Models Using
Bayesian Analysis. USC-CSE 1998
109.
Chulani, S., B. Boehm, et al. (1999). Bayesian analysis of empirical software
engineering cost models. IEEE Transactions on Software Engineering, 25(4),
573-583
110.
Chung, L., A. W. Pan, et al. (2003). "A causal model of rehabilitation resource
use for subjects with spinal cord injury in Taiwan." J Rehabil Med 35(5): 208-12
111.
Clarke, S. R., M. Bailey, et al. (2008). "Successful applications of statistical
modeling to betting markets." Mathematics Today (Bulletin of the IMA) 44(1):
38-44
112.
Cobb, B. and P. Shenoy (2005). "On the plausibility transformation method for
translating belief function models to probability models." Int J Approx Reason
41(3): 314-40
113.
Cofi˜no, A. S., R. Cano, et al. (2002). Bayesian networks for probabilistic
weather prediction. Proceedings of the 15th European Conference on Artificial
Intelligence: 695-700
114.
Coolen, F. P., M. Goldstein, et al. (2007). "Using Bayesian statistics to support
testing of software." Journal of Risk and Reliability 221(1): 85-93
115.
Cooper, G. F. and E. Herskovits (1992). A Bayesian Method for the Induction of
Probabilistic Networks from Data. Machine Learning, 9, Page 309
116.
Cooper, N., A. Sutton, et al. (2002). "Decision analytical economic modelling
within a Bayesian framework: application to prophylactic antibiotics use for
caesarean section." Stat Methods Med Res 11(6): 491-512
117.
Cooper., G. F. (1990). "The computational complexity of probabilistic inference
using bayesian belief networks ." Artificial Intelligence 42(2-3): 393-405
118.
Coulter, D. M., A. Bate, et al. (2001). "Antipsychotic drugs and heart muscle
disorder in international pharmacovigilance: data mining study." BMJ
322(7296): 1207-9
119.
Coupe, V. M., N. Peek, et al. (1999). "Using sensitivity analysis for efficient
quantification of a belief network." Artif Intell Med 17(3): 223-47
120.
Courtois, P. J., N. E. Fenton, et al. (1998). Examination of bayesian belief
network for safety assessment of nuclear computer-based systems, City
University, Centre for Software Reliability
121.
Cowell, R., S. Lauritzen, et al. (2006). "Identification and separation of DNA
mixtures using peak area information." Forensic Science International 166(1):
28-34
122.
Cowell, R. G. (2003). "Finex: a Probabilistic Expert System for forensic
identification." Forensic Science International 134(2): 196-206
123.
Cowell, R. G., A. P. Dawid, et al. (1991). "A Bayesian expert system for the
analysis of an adverse drug reaction." Artificial Intelligence in Medicine 3: 257270
124.
Cowell, R. G., A. P. Dawid, et al. (1999). Probabilistic Networks and Expert
Systems. New York, Springer
125.
Cowell, R. G., A. P. Dawid, et al. (1993). "Sequential Model Criticism in
Probabilistic Expert Systems." IEEE Transactions on Pattern Analysis and
Machine Intelligence 15(3): 209-219
126.
Cox, Z. and J. Pfautz (2007). Causal Influence Models: A Method for
Simplifying Construction of Bayesian Networks (Rep. No. R-BN07-01).
Cambridge, MA: Charles River Analytics Inc
127.
Croft, J. and J. Q. Smith (2003). "Discrete mixtures in simple Bayesian
Networks with hidden variables." J of Computational Statistics and Data
Analysis 41(3-4): 539-547
128.
Cruz-Ramirez, N., H. G. Acosta-Mesa, et al. (2007). "Diagnosis of breast cancer
using Bayesian networks: A case study." Comput Biol Med 37(11): 1553-64
129.
D’Ambrosio, B. (1999). "Inference in Bayesian Networks." AI Magazine, AAAI
20(2): 21-36
130.
Dagum, P. and R. M. Chavez (1993). Approximating Probabilistic Inference in
Bayesian Belief Networks. Pattern Analysis and Machine Intelligence 15(3):246255
131.
Dagum, P. and A. Galper (1995). "Time series prediction using belief network
models." International Journal of Human-Computer Studies 42(6): 617-632
132.
Dahll, G. (2000). "Combining disparate sources of information in the safety
assessment of software-based systems." Nuclear Engineering and Design 195(3):
307-319
133.
Dahll, G. and B. A. Gran (2000). The use of Bayesian belief nets in safety
assessment of software based systems. OECD Halden Reactor Project, PO Box
173, N-1751 Halden, Norway
134.
Dai, C. and J. Liu (2005). "Inducing Pairwise Gene Interactions from TimeSeries Data by EDA Based Bayesian Network." Conf Proc IEEE Eng Med Biol
Soc 7: 7746-9
135.
Darwiche, A. Constant-Space Reasoning in Dynamic Bayesian Networks
http://citeseer.ist.psu.edu/489080.html.
136.
Darwiche, A. (2003). "Differential Approach to Inference in Bayesian
Networks." Journal of the ACM 50(3): 280-305
137.
Das, B. (2004). "Generating Conditional Probabilities for Bayesian Networks:
Easing the Knowledge Acquisition Problem. http://www.arxiv.org [On-line].
Available: http://www.citebase.org/cgibin/citations?id=oai:arXiv.org:cs/0411034."
138.
Dawid, A. P. (2003). An object-oriented Bayesian network for estimating
mutation rates. Ninth International Workshop on Artificial Intelligence and
Statistics, ISBN 0-9727358-0-1. C. M. Bishop and B. J. Frey. Key West, Florida
http://tinyurl.com/39bmh.
139.
Dawid, A. P., J. Mortera, et al. (2006). Representing and solving complex DNA
identification cases using Bayesian networks. Progress in Forensic Genetics 11
(Proceedings of the 21st International ISFG Congress). A. Amorim, F. CorteReal and N. Morling. Ponta Delgada, The Azores, Portugal International
Congress Series, Elsevier Science, Amsterdam. 1288: 484-91
140.
Dawid, A. P., J. Mortera, et al. (2007). "Object-oriented Bayesian networks for
complex forensic DNA profiling problems." Forensic Science International 169:
195-205
141.
de Campos, L. M. (2006). "A Scoring Function for Learning Bayesian Networks
based on Mutual Information and Conditional Independence Tests." J. Mach.
Learn. Res. 7: 2149-2187
142.
de Campos, L. M. (2006). "A Scoring Function for Learning Bayesian Networks
based on Mutual Information and Conditional Independence Tests." J. Mach.
Learn. Res. 7: 2149-2187
143.
de Melo, A. C. V. and A. J. Sanchez (2008). "Software maintenance project
delays prediction using Bayesian Networks." Expert Syst. Appl. 34(2): 908-919
http://dx.doi.org/10.1016/j.eswa.2006.10.040.
144.
De Santa Olalla, F. J. M., Dominguez A, et al. (2005). "Integrated Water
Resources Management of the Hydrogeological Unit "Eastern Mancha" Using
Bayesian Belief Networks." Agricultural Water Management 77(1-3): 21-36
145.
de Santana, A. L., C. R. Frances, et al. (2007). "Strategies for improving the
modeling and interpretability of Bayesian networks." Data Knowl. Eng. 63(1):
91-107
146.
Deforche, K., R. Camacho, et al. (2007). "Bayesian network analysis of
resistance pathways against HIV-1 protease inhibitors." Infect Genet Evol 7(3):
382-90
147.
Delic, K. A., F. Mazzanti, et al. (1997). Formalising a software safety case via
belief networks. Proc DCCA-6, 6th IFIP International Working Conf on
Dependable Computing for critical Appliations, Garmisch-Partenkirchen,
Germany, March
148.
Dembo, R., D. Farrow, et al. (1979). "Testing a causal model of environmental
influences on the early drug involvement of inner city junior high school
youths." Am J Drug Alcohol Abuse 6(3): 313-36
149.
Deng, X., H. Geng, et al. (2006). "Joint learning of gene functions--a Bayesian
network model approach." J Bioinform Comput Biol 4(2): 217-39
150.
Dexheimer, J. W., L. E. Brown, et al. (2007). "Comparing decision support
methodologies for identifying asthma exacerbations." Stud Health Technol
Inform 129: 880-4
151.
Dey, S. and J. A. Stori (2005). "A Bayesian network approach to root cause
diagnosis of process variations." International Journal of Machine Tools and
Manufacture 45(1): 75-91
152.
Diamond, L., V. Mishka, et al. (1995). "Are normative expert systems
appropriate for diagnostic pathology?" J Am Med Inform Assoc 2(2): 85-93
153.
Díez, F. J. (1993). Parameter adjustment in Bayes networks: the gener-alized
noisy or-gate. Ninth Conference on Uncertainty in Artificial Intelligence. D.
Heckerman and A. Mamdani. Washington D.C: 99-105
154.
Diez, F. J., J. Mira, et al. (1997). "DIAVAL, a Bayesian expert system for
echocardiography." Artif Intell Med 10(1): 59-73
155.
Dockstader, S. L. and A. M. Tekalp (2001). "Multiple camera tracking of
interacting and occluded human motion." Proceedings of the IEEE 89(10): 14411455
156.
Donaghy, R. and A. H. Marshall (2005). Modelling the Health of ARMD
Patients Eyes Using a Dynamic Bayesian Network. Conference on Applied
Statistics. Ireland, Enniskillen: 98-99
157.
Downe-Wamboldt, B. L. and P. M. Melanson (1998). "A causal model of coping
and well-being in elderly people with arthritis." J Adv Nurs 27(6): 1109-16
158.
Dray, P., G. J. Bearfield, et al. (2007). Constructing Scalable and Parameterised
System Wide Risk Models. 25th International System Safety Conference.
Baltimore, USA, System Safety Society
159.
Druzdzel, M. J. and H. van Leijen (2001). "Causal reversibility in Bayesian
networks." Journal of Experimental and Theoretical Artificial Intelligence 13(1):
45-62
160.
Druzdzel, M. K. and L. C. van der Gaag (2000). "Building Probabilistic
Networks: Where Do the Numbers Come From?" IEEE Transactions on
Knowledge and Data Engineering 12(4): 481-486
161.
Druzdzel, M. K. and L. C. vanderGaag (1995). Elicitation of probabilities for
belief networks: combining qualitative and quantitiative information. Proc 11th
Ann Conf on Uncertainty in Artifical Intelligence (UAI-95), 141-148, Montreal,
Quebec, Canada, August
162.
Eaton, D. and K. Murphy (2007). "Exact Bayesian structure learning from
uncertain interventions." AI & Statistics
163.
Edwards, D. (2000). Introduction to Graphical Modelling, Springer-Verlag.
164.
Edwards, W. (1991). "Influence Diagrams, Bayesian Imperialism, and the
Collins case: an appeal to reason." Cardozo Law Review 13: 1025-1079
165.
Eleye-Datubo, A., A. Wall, et al. (2006). "Enabling a powerful marine and
offshore decision-support solution through Bayesian network technique." Risk
Anal 26(3): 695-721
166.
Elish, M. O., D. C. Rine, et al. (2002). "Evaluating collaborative software in
supporting organizational learning with Bayesian Networks." SAC '02:
Proceedings of the 2002 ACM symposium on Applied computing: 992-996
http://doi.acm.org/10.1145/508791.508984.
167.
Elloy, D. F., W. Terpening, et al. (2001). "A causal model of burnout among
self-managed work team members." J Psychol 135(3): 321-34
168.
Embrey, D. E. (1992). Incorporating management and organisational factors into
probabilistic safety assessment. Reliability Engineering and System Safety, 38,
199-208
169.
Erb, R. J. (1995). "The backpropagation neural network--a Bayesian classifier.
Introduction and applicability to pharmacokinetics." Clin Pharmacokinet 29(2):
69-79
170.
Evett, I. W., P. D. Gill, et al. (2002). "Interpreting small quantities of DNA: the
hierarchy of propositions and the use of Bayesian networks." Journal of Forensic
Sciences 47(3): 520-530
171.
Ezawa, K., M. Singh, et al. (1996). Learning Goal-Oriented Bayesian Networks
for Telecommunications Risk Management. 13th International Conference on
Machine Learning. Bari, Italy: 139-147
172.
Faigman, D. L. and A. J. Baglioni (1988). "Bayes' theorem in the trial process."
Law and Human Behavior 12(1): 1-17 http://dx.doi.org/10.1007/BF01064271.
173.
Falzon, L. (2005). "Using Bayesian network analysis to support centre of gravity
analysis in military planning." European Journal of Operational Research 170
(2): 629-643
174.
Fan, C.-F. and Y.-C. Yu (2004). "BBN-based software project risk
management." J Systems Software 73 (2): 193-203
175.
Federal Drugs Agency (2006 ). Guidance for the Use of Bayesian Statistics in
Medical Device Clinical Trials - Draft Guidance for Industry and FDA Staff,
U.S. Department of Health and Human Services, Food and Drug Administration
http://www.fda.gov/cdrh/osb/guidance/1601.html
176.
Feelders, A. J. and L. C. v. d. Gaag (2006). "Learning Bayesian network
parameters under order constraints." International Journal of Approximate
Reasoning (IJAR) 42: 37-53
177.
Feelders, A. J. and J. Ivanovs (2006). Discriminative Scoring of Bayesian
Network Classifiers: a Comparative Study. Third European workshop on
probabilistic graphical models (PGM'06) M. Studen'y and J. Vomlel: 75-82
178.
Fenton, N. E. (2003). SCULLY: Scaling up Bayesian Nets for Software Risk
Assessment. EPSRC Project GR/N00258 Final Report. Queen Mary University
of London, EPSRC
http://www.dcs.qmul.ac.uk/research/radar/Projects/scully/SCULLY%20Project
%20Final%20Report.pdf.
179.
Fenton, N. E., B. Littlewood, et al. (1998). "Assessing dependability of safety
critical systems using diverse evidence." IEE Proceedings Software 145(1): 3539
180.
Fenton, N. E., D. W. R. Marsh, et al. (1999). SERENE (SafEty and Risk
Evaluation using bayesian Nets): Method Manual
https://www.dcs.qmul.ac.uk/~norman/papers/serene.pdf.
181.
Fenton, N. E., W. Marsh, et al. (2004). Making Resource Decisions for Software
Projects. 26th International Conference on Software Engineering (ICSE2004)
Edinburgh, United Kingdom, IEEE Computer Society: 397-406
182.
Fenton, N. E. and M. Neil (1999). "A critique of software defect prediction
models." Software Engineering, IEEE Transactions on 25(5): 675-689
183.
Fenton, N. E. and M. Neil (1999). "Software metrics: successes, failures and new
directions." Journal of Systems and Software 47(2-3): 149-157
184.
Fenton, N. E. and M. Neil (2000). "Bayesian belief nets: a causal model for
predicting defect rates and resource requirements." Software Testing and Quality
Engineering 2(1): 48-53
185.
Fenton, N. E. and M. Neil (2000). "The Jury Fallacy and the use of Bayesian
nets to simplify probabilistic legal arguments." Mathematics Today (Bulletin of
the IMA) 36(6): 180-187
186.
Fenton, N. E. and M. Neil (2001). "Making Decisions: Using Bayesian Nets and
MCDA." Knowledge-Based Systems 14: 307-325
187.
Fenton, N. E. and M. Neil (2007). Managing Risk in the Modern World:
Bayesian Networks and the Applications, London Mathematical Society,
Knowledge Transfer Report. 1
http://www.lms.ac.uk/activities/comp_sci_com/KTR/apps_bayesian_networks.
pdf.
188.
Fenton, N. E., M. Neil, et al. (2007). "Using Ranked nodes to model qualitative
judgements in Bayesian Networks." IEEE Transactions on Knowledge and Data
Engineering 19(10): 1420-1432
189.
Fenton, N. E., M. Neil, et al. (2002). "Software Measurement: Uncertainty and
Causal Modelling." IEEE Software 10(4): 116-122
190.
Fenton, N. E., M. Neil, et al. (2008). "Using Bayesian Networks to Predict
Software Defects and Reliability." Proceedings of the Institution of Mechanical
Engineers, Part O, Journal of Risk and Reliability to appear
191.
Fenton, N. E., M. Neil, et al. (2007). "Predicting software defects in varying
development lifecycles using Bayesian nets." Information & Software
Technology 49: 32-43
192.
Fenton, N. E., L. Radlinski, et al. (2006). Improved Bayesian Networks for
Software Project Risk Assessment Using Dynamic Discretisation. Software
Engineering Techniques: Design for Quality (Prceedings of Software
Engineering Techniques 2006, Warsaw, Poland, 17-20 Oct 2006). K. Sacha,
Springer, Boston. 227: 139-148.
193.
Ferat, S., Y. M Cetin, et al. (2007). "Fault diagnosis for airplane engines using
Bayesian networks and distributed particle swarm optimization." Parallel
Comput. 33(2): 124-143
194.
Fernández, A. and A. Salmerón (2008). "BayesChess: A computer chess
program based on Bayesian networks." Pattern Recognition Letters 29 (8): 11541159
195.
Fine, S. and A. Ziv (2003). Coverage Directed Test Generation for Functional
Verification using Bayesian Networks. 40th Design Automation Conference:
286-291
196.
Fine, S. and A. Ziv (2004). On the application of Bayesian Networks for
simulation-based verification. 2nd Bayesian Modelling Applications Workshops
of Uncertainty in AI, Banff, Canada
197.
Fischer, E. A., J. Y. Lo, et al. (2004). "Bayesian networks of BI-RADStrade
mark descriptors for breast lesion classification." Conf Proc IEEE Eng Med Biol
Soc 4: 3031-4
198.
Foreman, L. A., C. Champod, et al. (2003). "Interpreting DNA Evidence: A
Review." Internat. Statist. Rev. 71(3): 473-495
199.
Forshed, J., F. O. Andersson, et al. (2002). "NMR and Bayesian regularized
neural network regression for impurity determination of 4-aminophenol." J
Pharm Biomed Anal 29(3): 495-505
200.
Freedman, D. A. (2004). "Graphical models for causation, and the identification
problem." Eval Rev 28(4): 267-93
201.
Friedman, N. and M. Goldszmidt (1998). Learning Bayesian Network from
Data. SRI International.
http://www.erg.sri.com/people/moises/tutorial/index.htm
202.
Fu, L. D. and I. Tsamardinos (2005). "A comparison of Bayesian network
learning algorithms from continuous data." AMIA Annu Symp Proc: 960
203.
Fugelsang, J. A. and V. A. Thompson (2003). "A dual-process model of belief
and evidence interactions in causal reasoning." Mem Cognit 31(5): 800-15
204.
Fung, R. and B. Del Favero (1995). "Applying Bayesian Networks to
Information Retrieval." Communications of the ACM 38(3): 42-48
205.
Galliers, J., A. Sutcliffe, et al. (1999). A causal model of human error for safetycritical user interface design. City University, CHCID
206.
Garbolino, P. and F. Taroni (2002). "Evaluation of scientific evidence using
Bayesian networks." Forensic Sci. Int. 125 149-155
207.
Garc, P., A. Amandi, et al. (2007). "Evaluating Bayesian networks' precision for
detecting students' learning styles." Comput. Educ. 49(3): 794-808
208.
Geiger, D. and D. Heckerman (1996). "Knowledge representation and inference
in similarity networks and Bayesian multinets." Artifical Intelligence J 82((1-2)):
45-74
209.
Gevaert, O., F. De Smet, et al. (2006). "Predicting the outcome of pregnancies of
unknown location: Bayesian networks with expert prior information compared to
logistic regression." Human Reproduction 21(7): 1824-1831
210.
Gevaert, O., F. De Smet, et al. (2006). "Predicting the prognosis of breast cancer
by integrating clinical and microarray data with Bayesian networks."
Bioinformatics 22(14): e184-90
211.
Ghabayen, S. M. S., M. McKee, et al. (2006). "Ionic and isotopic ratios for
identification of salinity sources and missing data in the Gaza aquifer." Journal
of Hydrology 318(1-4): 360-373
212.
Gilthorpe, M., I. Maddick, et al. (2000). "Introduction to Bayesian modelling in
dental research." Community Dent Health 17(4): 218-21
213.
Gjerdingen, D. K., D. G. Froberg, et al. (1990). "A causal model describing the
relationship of women's postpartum health to social support, length of leave, and
complications of childbirth." Women Health 16(2): 71-87
214.
Glymour, C. (2001). The Mind's Arrows: Bayes Nets and Graphical Causal
Models in Psychology. Cambridge, MA: , The MIT Press.
215.
Golightly, A. and D. J. Wilkinson (2006). "Bayesian sequential inference for
stochastic kinetic biochemical network models." J Comput Biol 13(3): 838-51
216.
Gong, S., J. Ng, et al. (2002). "On the semantics of visual behaviour, structured
events and trajectories of human action." Image and Vision Computing 20(12):
873-888
217.
Goubanova, O. and S. King (2008). "Bayesian networks for phone duration
prediction." Speech Commun. 50(4): 301-311
218.
Gran, B. A. (2002). "Assessment of programmable systems using Bayesian
belief nets
219.
" Safety Science 40(9): 797-812
220.
Gras, J.-J. (2004). "End-to-End Defect Modeling." IEEE Software 21(5): 98-100
http://doi.ieeecomputersociety.org/10.1109/MS.2004.1331312.
221.
Green, N. (2005). "A Bayesian network coding scheme for annotating
biomedical information presented to genetic counseling clients." J Biomed
Inform 38(2): 130-44
222.
Greenland, S. (1990). "Randomization, statistics, and causal inference."
Epidemiology 1(6): 421-9
223.
Greenland, S. and B. Brumback (2002). "An overview of relations among causal
modelling methods." Int J Epidemiol 31(5): 1030-7
224.
Greenland, S. and H. Morgenstern (2001). "Confounding in health research."
Annu Rev Public Health 22: 189-212
225.
Greenland, S., J. Pearl, et al. (1999). "Causal diagrams for epidemiologic
research." Epidemiology 10(1): 37-48
226.
Gregoriades, A. and A. Sutcliffe (2005). "Scenario-based assessment of
nonfunctional requirements." Software Engineering, IEEE Transactions on
31(5): 392-409
227.
Griffin, H. C., C. L. Fitch, et al. (2004). "The causal pathway model and cerebral
palsy." Neonatal Netw 23(6): 43-7
228.
Haddawy, P., J. Jacobson, et al. (1997). "BANTER: a Bayesian network tutoring
shell." Artif Intell Med 10(2): 177-200
229.
Haddawy, P., C. E. Kahn, Jr., et al. (1994). "A Bayesian network model for
radiological diagnosis and procedure selection: work-up of suspected gallbladder
disease." Med Phys 21(7): 1185-92
230.
Hajmeer, M. N. and I. A. Basheer (2003). "A hybrid Bayesian-neural network
approach for probabilistic modeling of bacterial growth/no-growth interface." Int
J Food Microbiol 82(3): 233-43
231.
Hall, J. A., M. A. Milburn, et al. (1993). "A causal model of health status and
satisfaction with medical care." Med Care 31(1): 84-94
232.
Halliwell, J., J. Keppens, et al. (2003). "Linguistic Bayesian Networks for
reasoning with subjective probabilities in forensic statistics." ICAIL '03:
Proceedings of the 9th international conference on Artificial intelligence and
law: 42-50
233.
Hamilton, P. W., N. Anderson, et al. (1994). "Expert system support using
Bayesian belief networks in the diagnosis of fine needle aspiration biopsy
specimens of the breast." J Clin Pathol 47(4): 329-36
234.
Hansen, C. P. (1989). "A causal model of the relationship among accidents,
biodata, personality, and cognitive factors." J Appl Psychol 74(1): 81-90
235.
Hatsch, D., C. Keyser, et al. (2007). "Resolving paternity relationships using Xchromosome STRs and Bayesian networks." J Forensic Sci 52(4): 895-7
236.
Hearty, P., N. Fenton, et al. (2007). "Predicting Project Velocity in XP using a
Learning Dynamic Bayesian Network Model." IEEE Trans Software Eng
(submitted)
237.
Hearty, P., N. Fenton, et al. (2005). Automated population of causal models for
improved software risk assessment. ASE '05: Proceedings of the 20th
IEEE/ACM international Conference on Automated software engineering, Long
Beach, CA, USA, ACM Press.
238.
Heckerman and EricHorvitz (1998). Inferring Informational Goals from FreeText Queries: A Bayesian Approach. In: Proceedings of the Fourteenth
Conference on Uncertainty in Artificial Intelligence, Madison, WI, pages 230237. Morgan Kaufmann: San Francisco, July
239.
Heckerman, D. and J. S. Breese (1995). Causal independence for probability
assessment and inference using Bayesian networks. Microsoft Technical Report
MSR-TR-94-08, to appear in IEEE Systems Man and Cybernetics
240.
Heckerman, D., D. Geiger, et al. (1995). Learning Bayesian networks: trhe
combination of knowledge and statistical data. Machine Learning, 20, 197-243
241.
Heckerman, D., A. Mamdani, et al. (1995). Real-world applications of Bayesian
networks. Comm ACM, 38(3), 25-26
242.
Hejlesen, O., S. Andreassen, et al. (1997). "DIAS--the diabetes advisory system:
an outline of the system and the evaluation results obtained so far." Comput
Methods Programs Biomed 54(1-2): 49-58
243.
Hejlesen, O. K., K. G. Olesen, et al. (2005). "Decision support for diagnosis of
lyme disease." Stud Health Technol Inform 116: 205-10
244.
Helman, P., R. Veroff, et al. (2004). "A Bayesian network classification
methodology for gene expression data." J Comput Biol 11(4): 581-615
245.
Helsper, E. M., L. C. v. d. Gaag, et al. (2005). Bringing order into Bayesiannetwork construction. Third International Conference on Knowledge Capture,
New York: ACM Press: 121-128
246.
Henderson, J. S. and R. W. Burn (2004). "Uptake pathways: the potential of
Bayesian belief networks to assist the management, monitoring and evaluation of
development-orientated research." Agricultural Systems 79(1): 3-15
247.
Henriksen, H. J., P. Rasmussen, et al. (2007). "Public participation modelling
using Bayesian networks in management of groundwater contamination."
Environmental Modelling & Software 22(8): 1101-1113
248.
Henrion, M. (1989). Some Practical Issues in Constructing Belief Networks.
Uncertainty in Artificial Intelligence 3. L. Kanal, T. Levitt and J. Lemmer, North
Holland: Elsevier Science: 161-173
249.
Hepler, A. B., A. P. Dawid, et al. (2007). "Object-oriented graphical
representations of complex patterns of evidence." Law, Probability & Risk 6(14): 275-293
250.
Hepler, A. B. and B. S. Weir (2004). Using Bayesian Networks for Paternity
Calculations: Adding an Evolutionary Perspective. JSM (Joint Statistical
Meetings) 2004. Toronto, Canada
251.
Hernan, M. A. (2004). "A definition of causal effect for epidemiological
research." J Epidemiol Community Health 58(4): 265-71
252.
Hernan, M. A. and J. M. Robins (2006). "Instruments for causal inference: an
epidemiologist's dream?" Epidemiology 17(4): 360-72
253.
Herskovits, E. H. and G. F. Cooper (1991). "Algorithms for Bayesian beliefnetwork precomputation." Methods Inf Med 30(2): 81-9
254.
Hibou, M. and J.-M. Labat (2006). How to orientate arcs in a Bayesian network
based student model. 6th IEEE International Conference on Advance Learning
Technologies: 560-562
255.
Hoeffer, B. (1987). "A causal model of loneliness among older single women."
Arch Psychiatr Nurs 1(5): 366-73
256.
Hofler, M. (2005). "The Bradford Hill considerations on causality: a
counterfactual perspective." Emerg Themes Epidemiol 2: 11
257.
Hofler, M. (2005). "Causal inference based on counterfactuals." BMC Med Res
Methodol 5: 28
258.
Hofler, M. (2006). "Getting causal considerations back on the right track."
Emerg Themes Epidemiol 3: 8
259.
Hogan, J. W. and D. O. Scharfstein (2006). "Estimating causal effects from
multiple cycle data in studies of in vitro fertilization." Stat Methods Med Res
15(2): 195-209
260.
Holst, A. and A. Lansner (1993). "A flexible and fault tolerant query-reply
system based on a Bayesian neural network." Int J Neural Syst 4(3): 257-67
261.
Hoot, N. and D. Aronsky (2005). "Using Bayesian networks to predict survival
of liver transplant patients." AMIA Annu Symp Proc: 345-9
262.
Horn, J., T. Birkhölzer, et al. (2001). Knowledge Acquisition and Automated
Generation of Bayesian Networks for a Medical Dialogue and Advisory System.
Lecture Notes In Computer Science; Vol. 2101 Proceedings of the 8th
Conference on AI in Medicine in Europe: Artificial Intelligence Medicine Pages:
199 - 202.
263.
Horvitz, E. (1998). Lumiere Project: Bayesian Reasoning for Automated
Assistance, Decision Theory & Adaptive Systems Group, Microsoft Research.
Microsoft Corp. Redmond, WA
http://research.microsoft.com/research/dtg/horvitz/lum.htm.
264.
Horvitz, E. and M. Barry (1995). Display of information for time-critical
decision making. 11th Conference on Uncertainty in Artificial Intelligence.
Montreal
265.
Horvitz, E., J. Breese, et al. (1998). The Lumiere Project: Bayesian User
Modeling for Inferring the Goals and Needs of Software Users. Proceedings of
the Fourteenth Conference on Uncertainty in Artificial Intelligence
266.
Huaien, L. and S. Puthusserypady (2004). "Bayesian radial basis function
network for modeling fMRI data." Conf Proc IEEE Eng Med Biol Soc 1: 450-3
267.
Huang, C. and A. Darwiche (1996). "Inference in Belief Networks: A Procedural
Guide." International Journal of Approximate Reasoning (IJAR) 15(3): 225-263
268.
Hudson, L. D., B. S. Ware, et al. An Application of Bayesian Networks to
Antiterrorism Risk Management for Military Planners
www.dsbox.com/Images/UAI_Antiterrorism_Paper.pdf.
269.
Hummel, R. and L. Manevitz (1996). "A statistical approach to the
representation of uncertainty in beliefs using spread of opinions."
270.
Husmeier, D., W. D. Penny, et al. (1999). "An empirical evaluation of Bayesian
sampling with hybrid Monte Carlo for training neural network classifiers."
Neural Netw 12(4-5): 677-705
271.
Huygen, P. E. M. (2002). Use of Bayesian Belief Networks in legal reasoning.
17th BILETA Annual Conference. Free University, Amsterdam
http://www.bileta.ac.uk/02papers/huygen.html.
272.
Hwang, K. and B. Zhang (2005). "Bayesian model averaging of Bayesian
network classifiers over multiple node-orders: application to sparse datasets."
IEEE Trans Syst Man Cybern B Cybern 35(6): 1302-10
273.
Imoto, S., S. Kim, et al. (2003). "Bayesian network and nonparametric
heteroscedastic regression for nonlinear modeling of genetic network." J
Bioinform Comput Biol 1(2): 231-52
274.
Imoto, S., K. Sunyong, et al. (2002). "Bayesian network and nonparametric
heteroscedastic regression for nonlinear modeling of genetic network." Proc
IEEE Comput Soc Bioinform Conf 1: 219-27
275.
Jensen, F. V. (1996). An Introduction to Bayesian Networks.
276.
Jensen, F. V., S. L. Lauritzen, et al. (1990). An algebra of bayesian belief
universes for knowledge based systems. Networks, 20, 637-659
277.
Jensen, F. V. and T. Nielsen (2007). Bayesian Networks and Decision Graphs,
Springer-Verlag New York Inc.
278.
Ji, Q., P. Lan, et al. (2006). "A Probabilistic Framework for Modeling and RealTime Monitoring Human Fatigue." IEEE TRANSACTIONS ON SYSTEMS,
MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS 36(5):
862-875
279.
Joseph, A., N. Fenton, et al. (2006). "Predicting football results using Bayesian
Nets and other Machine Learning Techniques." Knowledge Based Systems
17(7): 544-553
280.
Jowett, C. (2001). Sittin' in the Dock with the Bayes. New Law Journal Expert
Witness Supplement of Feb 16
281.
Kahn, C. E., Jr., J. J. Laur, et al. (2001). "A Bayesian network for diagnosis of
primary bone tumors." J Digit Imaging 14(2 Suppl 1): 56-7
282.
Kahn, C. E., Jr., L. M. Roberts, et al. (1997). "Construction of a Bayesian
network for mammographic diagnosis of breast cancer." Comput Biol Med
27(1): 19-29
283.
Kahn, C. J., J. Laur, et al. (2001). "A Bayesian network for diagnosis of primary
bone tumors." J Digit Imaging 14(2 Suppl 1): 56-7
284.
Kahn, C. J., L. Roberts, et al. (1997). "Construction of a Bayesian network for
mammographic diagnosis of breast cancer." Comput Biol Med 27(1): 19-29
285.
Kahn, C. J., L. Roberts, et al. (1995). "Preliminary investigation of a Bayesian
network for mammographic diagnosis of breast cancer." Proc Annu Symp
Comput Appl Med Care: 208-12
286.
Kang, C. W. and M. W. Golay (1999). "A Bayesian belief network-based
advisory system for operational availability focused diagnosis of complex
nuclear power systems." Expert Systems with Applications 17(1): 21-32
287.
Kannan, P. R. (2007). "Bayesian networks: Application in safety instrumentation
and risk reduction." ISA Transactions 46(2): 255-259
288.
Karraz, G. and G. Magenes (2006). "Automatic Classification of Heartbeats
using Neural Network Classifier based on a Bayesian Framework." Conf Proc
IEEE Eng Med Biol Soc 1: 4016-9
289.
Kayaalp, M., G. F. Cooper, et al. (2000). "Predicting ICU mortality: a
comparison of stationary and nonstationary temporal models." Proc AMIA
Symp: 418-22
290.
Kazi, J. I., P. N. Furness, et al. (1998). "Diagnosis of early acute renal allograft
rejection by evaluation of multiple histological features using a Bayesian belief
network." J Clin Pathol 51(2): 108-13
291.
Khodakarami, V., N. Fenton, et al. (2007). "Project Scheduling: Improved
approach to incorporate uncertainty using Bayesian Networks." Project
Management Journal 38: 39-49
292.
Kiebel, S., M. Garrido, et al. (2007). "Dynamic causal modelling of evoked
responses: the role of intrinsic connections." Neuroimage 36(2): 332-45
293.
Kikuchi, T., H. Pezeshk, et al. (2007). "A Bayesian cost-benefit approach to the
determination of sample size in clinical trials." Stat Med
294.
Kim, J. S., J. Kaye, et al. (2001). "Moderating and mediating effects in causal
models." Issues Ment Health Nurs 22(1): 63-75
295.
Kim, S., S. Imoto, et al. (2004). "Dynamic Bayesian network and nonparametric
regression for nonlinear modeling of gene networks from time series gene
expression data." Biosystems 75(1-3): 57-65
296.
Kline, J. A., A. J. Novobilski, et al. (2005). "Derivation and validation of a
Bayesian network to predict pretest probability of venous thromboembolism."
Ann Emerg Med 45(3): 282-90
297.
Koller, D., U. Lerner, et al. (1999). A General Algorithm for Approximate
Inference and its Application to Hybrid Bayes Nets. In Proceedings of the 15th
Annual Conference on Uncertainty in AI (UAI), Stockholm, Sweden, August
1999, pages 324-333
298.
Koller, D. and A. Pfeffer (1997). Object-Oriented Bayesian Networks.
Proceedings of the 13th Annual Conference on Uncertainty in AI (UAI)
Providence, Rhode Island: 302-313
299.
Korb, K. B. and A. E. Nicholson (2004). Bayesian Artificial Intelligence, CRC
Press.
300.
Kozlov, A. V. and D. Koller (1997). Nonuniform dynamic discretization in
hybrid networks. Proceedings of the 13th Annual Conference on Uncertainty in
AI (UAI). Providence, Rhode Island: 314-325
301.
Kozlov, A. V. and J. P. Singh (1996). "Parallel implementation of probabilistic
inference."
302.
Krause, P. (1998). "Learning probabilistic networks." The Knowledge
Engineering Review 15(3): 321-351
303.
Lacave, C. and F. J. Diez (2002). "A review of explanation methods for
Bayesian networks." Knowl. Eng. Rev. 17(2): 107-127
304.
Lam, S. K. and A. Owen (2007). "Combined resynchronisation and implantable
defibrillator therapy in left ventricular dysfunction: Bayesian network metaanalysis of randomised controlled trials." BMJ
305.
Lam, W. and F. Bacchus (1994). Learning Bayesian Belief Networks: An
Approach based on the MDL Principle. Computation Intelligence Vol 10:4,
pages 269--293
306.
Langseth, H. (2002). Bayesian Networks with Applications in Reliability
Analysis. Dept. of Mathematical Sciences, Norwegian University of Science and
Technology. PhD
307.
Langseth, H. and L. Portinale (2007). "Bayesian networks in reliability." Reliab
Eng Syst Saf 92(1): 92-108
308.
Lansner, A. and A. Holst (1996). "A higher order Bayesian neural network with
spiking units." Int J Neural Syst 7(2): 115-28
309.
Laskey, K. and S. Mahoney (1998). Network fragments: representing knowledge
for constructing probabilistic model networks. 13th Annual Conference on
Uncertainty in AI
http://site.gmu.edu/~klaskey/lectures.html.
310.
Laskey, K. B. (1995). Sensitivity Analysis for Probability Assessments in
Bayesian Networks. IEEE Transactions on Systems, Man, and Cybernetics 25(6)
pp. 901-909
311.
Laskey, K. B. and S. M. Mahoney (2005). "Network engineering for agile belief
network models." IEEE Transactions on Knowledge and Data Engineering 12
(4): 487-498
312.
Laskey, K. B. and S. Mahoney. (2000). "Network Engineering for Agile Belief
Network Models." IEEE Transactions on Knowledge and Data Engineering
12(4): 487-498
313.
Lauría, E. J. M. and P. J. Duchessi (2006). "A Bayesian Belief Network for IT
implementation decision support." Decision Support Systems 42(3): 1573-1588
314.
Lauritzen, S. L. (1996). Graphical Models, Clarendon Press, Oxford.
315.
Lauritzen, S. L. and D. J. Spiegelhalter (1988). Local Computations with
Probabilities on Graphical Structures and their Application to Expert Systems
(with discussion). J. R. Statis. Soc. B, 50, No 2, pp 157-224
316.
Le Duff, F., C. Muntean, et al. (2004). "Predicting survival causes after out of
hospital cardiac arrest using data mining method." Medinfo 11(Pt 2): 1256-9
317.
Lederer, A. L. and J. Prasad (1998). "A causal model for software cost
estimating error."
318.
Lee, C.-J. and K. J. Lee (2005). "Application of Bayesian network to the
probabilistic risk assessment of nuclear waste disposal." Reliability Engineering
& System Safety 91(5): 515-532
319.
Lee, P. M. (1997). Bayesian Statistics: An Introduction, 2nd Edn.
320.
Lee, S.-M. and P. A. Abbott (2003). "Bayesian networks for knowledge
discovery in large datasets: basics for nurse researchers." J. of Biomedical
Informatics 36(4/5): 389-399
321.
Leegon, J. and D. Aronsky (2006). "Impact of different training strategies on the
accuracy of a Bayesian network for predicting hospital admission." AMIA Annu
Symp Proc: 474-8
322.
Leegon, J., I. Jones, et al. (2005). "Predicting hospital admission for Emergency
Department patients using a Bayesian network." AMIA Annu Symp Proc: 1022
323.
Lehmann, H. and E. Shortliffe (1991). "Thomas: building Bayesian statistical
expert systems to aid in clinical decision making." Comput Methods Programs
Biomed 35(4): 251-60
324.
Leibovici, L., M. Fishman, et al. (2000). "A Causal Probabilistic Network for
Optimal Treatment of Bacterial Infection." IEEE Transactions on Knowledge
and Data Engineering 12(4): 517-528
325.
Levitt, T. S. and K. B. Laskey (2000). "Computational Inference for Evidential
Reasoning in Support of Judicial Proof." Cardozo Law Review 22: 1691-1731
326.
Lewis, N. D. C. (1999). "Continuous process improvement using Bayesian belief
networks." Computers & Industrial Engineering 37(1-2): 449-452
327.
Li, W., P. van Beek, et al. Performing Incremental Bayesian Inference by
Dynamic Model Counting
http://citeseer.ist.psu.edu/li06performing.html.
328.
Liang, Y. and A. G. Kelemen (2004). "Hierarchical Bayesian neural network for
gene expression temporal patterns." Stat Appl Genet Mol Biol 3: Article20
329.
Lin, J.-H. and P. J. Haug (2008). "Exploiting missing clinical data in Bayesian
network modeling for predicting medical problems." J. of Biomedical
Informatics 41(1): 1-14
330.
Lindley, D. V. (1985). Making Decisions. John Wiley and Sons
331.
Lindquist, M. (2007). "Use of triage strategies in the WHO signal-detection
process." Drug Saf 30(7): 635-7
332.
Lindquist, M., M. Stahl, et al. (2000). "A retrospective evaluation of a data
mining approach to aid finding new adverse drug reaction signals in the WHO
international database." Drug Saf 23(6): 533-42
333.
Lipsky, A. and R. Lewis (2005). "Placing the Bayesian network approach to
patient diagnosis in perspective." Ann Emerg Med 45(3): 291-4
334.
Lisboa, P. J., H. Wong, et al. (2003). "A Bayesian neural network approach for
modelling censored data with an application to prognosis after surgery for breast
cancer." Artif Intell Med 28(1): 1-25
335.
Littlewood, B., L. Strigini, et al. (2000). Bayesian Belief Networks for Safety
Assessment of Computer-based Systems. System Performance Evaluation
Methodologies and Applications. E. Gelenbe, CRC Press, Boca Raton: 349-364.
336.
Littlewood, B. and J. L. Verrall (1973). A Bayesian reliability growth model for
computer software. J Royal Statist. Soc. C22, 332-34
337.
Littlewood, B. and D. Wright (2007). "The Use of Multilegged Arguments to
Increase Confidence in Safety Claims for Software-Based Systems: A Study
Based on a BBN Analysis of an Idealized Example." Software Engineering,
IEEE Transactions on 33(5): 347-365
338.
Littlewood, B. and D. R. Wright (1995). A Bayesian model that combines
disparate evidence for the quantitative assessment of system dependability. Proc
14th International Conference on Computer Safety (SafeComp'95), pp 173-188,
Springer
339.
Long, W. J., H. Fraser, et al. (1997). "Reasoning requirements for diagnosis of
heart disease." Artif Intell Med 10(1): 5-24
340.
Lovell, D. R., B. Rosario, et al. (1997). "Design, construction and evaluation of
systems to predict risk in obstetrics." Int J Med Inform 46(3): 159-73
341.
Lucas, P. F. J. (2001). Certainty-factor-like structures in Bayesian belief
networks. Knowledge-Based Systems 14, 327-335
342.
Lucas, P. J., L. C. van der Gaag, et al. (2004). "Bayesian networks in
biomedicine and health-care." Artif Intell Med 30(3): 201-14
343.
Luciani, D., S. Cavuto, et al. (2007). "Bayes pulmonary embolism assisted
diagnosis: a new expert system for clinical use." Emerg Med J 24(3): 157-64
344.
Luciani, D., M. Marchesi, et al. (2003). "The role of Bayesian Networks in the
diagnosis of pulmonary embolism." J Thromb Haemost 1(4): 698-707
345.
Luo, J., A. E. Savakis, et al. (2005). "A Bayesian network-based framework for
semantic image understanding." Pattern Recognition 38(6): 919-934
346.
Luu, V. T., S.-Y. Kim, et al. (2008). "Quantifying schedule risk in construction
projects using Bayesian belief networks." International Journal of Project
Management In Press, Corrected Proof
347.
Ma, J., J. Yang, et al. (2006). "[Automatic diagnosis of malignant degree of brain
glioma based on Bayesian network]." Sheng Wu Yi Xue Gong Cheng Xue Za
Zhi 23(1): 184-8
348.
Ma, L., T. Arentze, et al. (2007). "Modelling land-use decisions under conditions
of uncertainty." Computers, Environment and Urban Systems 31(4): 461-476
349.
Ma, W., J. Beck, et al. (2006). "Bayesian inference with probabilistic population
codes." Nat Neurosci 9(11): 1432-8
350.
Madsen, A. L. (2007). Bayesian Networks And Influence Diagrams. New York,
Springer Verlag.
351.
Maglogiannis, I., E. Zafiropoulos, et al. (2006). "Risk analysis of a patient
monitoring system using Bayesian Network modeling." J Biomed Inform 39(6):
637-47
352.
Mahoney, S. M. and K. B. Laskey (1996). Network Engineering for Complex
Belief Networks. Twelfth Conference on Uncertainty in Artificial Intelligence:
389-396
353.
Mani, S. and G. F. Cooper (2004). "Causal discovery using a Bayesian local
causal discovery algorithm." Medinfo 11(Pt 1): 731-5
354.
Mani, S. and M. Pazzani (1998). "Guideline generation from data by induction
of decision tables using a Bayesian network framework." Proc AMIA Symp:
518-22
355.
Mani, S., M. Valtorta, et al. (2005). "Building Bayesian Network Models in
Medicine: The MENTOR Experience." Applied Intelligence 22(2): 93-108
356.
Marcot, B. G., R. S. Holthausen, et al. (2001). "Using Bayesian belief networks
to evaluate fish and wildlife population viability under land management
alternatives from an environmental impact statement." Forest Ecology and
Management 153(1-3): 29-42
357.
Markides, K. S. and H. W. Martin (1979). "A causal model of life satisfaction
among the elderly." J Gerontol 34(1): 86-93
358.
Marquez, D., M. Neil, et al. (2007). Improved Dynamic Fault Tree modelling
using Bayesian Networks. The 37th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, DSN 2007. Edinburgh, IEEE
359.
Marquez, D., M. Neil, et al. (2008). Solving Dynamic Fault Trees using a New
Hybrid Bayesian Network Inference Algorithm. 16th Mediterranean Conference
on Control and Automation (MOD 08). Ajaccio, Corsica, France
360.
Marquez, D., M. Neil, et al. (2007). A new Bayesian Network approach to
Reliability modelling. 5th International Mathematical Methods in Reliability
Conference (MMR 07). Glasgow
http://www.dcs.qmw.ac.uk/~norman/papers/Improved%20DFT%20modelling
%20using%20BNs_v1.pdf.
361.
Marquez, D., M. Neil, et al. (2008). Reliability Modelling Using Hybrid
Bayesian Networks. ISBIS-2008 International Symposium on Business and
Industrial Statistics. Prague, Czech Republic
362.
Marsh, D. W. R. and G. J. Bearfield (2007). Merging Event Trees Using
Bayesian Networks. ESREL 2007. Stavanger, Norway, Springer-Verlag
363.
Marsh, W. and G. Bearfield (2004). Using Bayesian Networks to model accident
causation in the UK railway industry. Seventh international conference PSAM.
Berlin, Germany
364.
Marsh, W. and G. Bearfield (2007). Representing Parameterised Fault Trees
using Bayesian Networks. 26th International Conference on Computer Safety,
Reliability and Security, (SAFECOMP 2007), Springer-Verlag.
365.
Marshall, A. H., S. I. McClean, et al. (2001). "Developing a Bayesian belief
network for the management of geriatric hospital care." Health Care Manag Sci
4(1): 25-30
366.
Marshall, A. H., S. I. McClean, et al. (2002). "Modelling patient duration of stay
to facilitate resource management of geriatric hospitals." Health Care Manag Sci
5(4): 313-9
367.
Maskery, S. M., H. Hu, et al. (2008). "A Bayesian derived network of breast
pathology co-occurrence." J. of Biomedical Informatics 41(2): 242-250
368.
Mathieu, H. and L. Jean-Marc (2006). How to Orientate Arcs in a Bayesian
Network Based Student Model? Proceedings of the Sixth IEEE International
Conference on Advanced Learning Technologies, IEEE Computer Society: 560 562
369.
Matsushita, Y., Y. Kuroda, et al. (2007). "Criteria revision and performance
comparison of three methods of signal detection applied to the spontaneous
reporting database of a pharmaceutical manufacturer." Drug Saf 30(8): 715-26
370.
Matthews, R. (1998). The Cassandra Criterion. Mathematics Today (Bulletin of
the IMA), 34(1), 7-10
371.
Mayo, M. and A. Mitrovic (2001). "Optimising ITS Behaviour with Bayesian
Networks and Decision Theory." International Journal of Artificial Intelligence
372.
Mazzucchelli, R., A. Santinelli, et al. (2001). "Urothelial papillary lesions.
Development of a Bayesian Belief Network for diagnosis and grading."
Anticancer Res 21(2A): 1157-62
373.
McKendrick, I. J., G. Gettinby, et al. (2000). "Using a Bayesian belief network
to aid differential diagnosis of tropical bovine diseases." Prev Vet Med 47(3):
141-56
374.
Mercier, C. and S. King (1994). "A latent variable causal model of the quality of
life and community tenure of psychotic patients." Acta Psychiatr Scand 89(1):
72-7
375.
Merkhofer, M. W. (1990). Using influence diagrams in multiattribute utility
analysis - improving effectiveness through improving communication. Chapter
13 in 'Belief Nets and Decision Analysis', Oliver RM and Smith JQ (eds), Wiley
376.
Michalowski, W., S. Wilk, et al. (2006). "Using a Bayesian belief network model
to categorize length of stay for radical prostatectomy patients." Health Care
Manag Sci 9(4): 341-8
377.
Michel, M. and R. Jacobs (2007). "Parameter learning but not structure learning:
a Bayesian network model of constraints on early perceptual learning." J Vis
7(1): 4
378.
Midkiff, R. M., Jr., J. P. Burke, et al. (1989). "A causal model of mathematics
performance in early adolescence: the role of sex." Psychol Rep 64(1): 167-76
379.
Millard, A. V. (1994). "A causal model of high rates of child mortality." Soc Sci
Med 38(2): 253-68
380.
Mittal, A. and L. F. Cheong (2004). Addressing the Problems of Bayesian
Network Classification of Video Using High-Dimensional Features. IEEE
TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.
16, NO. 2
381.
Mittal, A. and A. Kassim (2007). Bayesian Network Technologies: Applications
and Graphical Models.
382.
Mittnik, S. and I. Starobinskaya (2007). "Modeling Dependencies in Operational
Risk with Hybrid Bayesian Networks." Methodol Comput Appl Probab
383.
Monti, S. and G. Carenini (2000). "Dealing with the Expert Inconsistency in
Probability Elicitation." IEEE Transactions on Knowledge and Data Engineering
12(4): 499-508
384.
Montironi, R., P. H. Bartels, et al. (1996). "Atypical adenomatous hyperplasia
(adenosis) of the prostate: development of a Bayesian belief network for its
distinction from well-differentiated adenocarcinoma." Hum Pathol 27(4): 396407
385.
Montironi, R., P. H. Bartels, et al. (1996). "Androgen-deprived prostate
adenocarcinoma: evaluation of treatment-related changes versus no distinctive
treatment effect with a Bayesian belief network. A methodological approach."
Eur Urol 30(3): 307-15
386.
Montironi, R., P. H. Bartels, et al. (1994). "Prostatic intraepithelial neoplasia.
Development of a Bayesian belief network for diagnosis and grading." Anal
Quant Cytol Histol 16(2): 101-12
387.
Montironi, R., P. H. Bartels, et al. (1995). "Prostatic intraepithelial neoplasia
(PIN). Performance of Bayesian belief network for diagnosis and grading." J
Pathol 177(2): 153-62
388.
Montironi, R., L. Diamanti, et al. (1997). "Subtle changes in benign tissue
adjacent to prostate neoplasia detected with a Bayesian belief network." J Pathol
182(4): 442-9
389.
Montironi, R., R. Mazzucchelli, et al. (2002). "Improving inter-observer
agreement and certainty level in diagnosing and grading papillary urothelial
neoplasms: usefulness of a Bayesian belief network." Eur Urol 41(4): 449-57
390.
Montironi, R., W. F. Whimster, et al. (1996). "How to develop and use a
Bayesian Belief Network." J Clin Pathol 49(3): 194-201
391.
Moore, A. and D. Zuev (2005). Internet Traffic Classification using bayesian
analysis techniques. SIGMETRICS '05, June 6-10, Banff, Canada
392.
Morales-Napoles, O., D. Kurowicka, et al. (2008). "Continuous-discrete nonparametric Bayesian Belief Nets in Aviation Safety with UNINET."
Computational Statistics and Data Analysis submitted
393.
Moran, A., I. Bar-Gad, et al. (2006). "Real-time refinement of subthalamic
nucleus targeting using Bayesian decision-making on the root mean square
measure." Mov Disord 21(9): 1425-31
394.
Morelli, R., J. Bronzino, et al. (1987). "Expert systems in psychiatry. A review."
J Med Syst 11(2-3): 157-68
395.
Morgan, B. W. (1968). An Introduction to Bayesian Statistical Decision
Processes.
396.
Morris, S. B., D. Cork, et al. (1997). "The cognitive processing of causal
knowledge."
397.
Morrison, M., W. McCluggage, et al. (2002). "Expert system support using a
Bayesian belief network for the classification of endometrial hyperplasia." J
Pathol 197(3): 403-14
398.
Mortera, J., A. P. Dawid, et al. (2003). "Probabilistic expert systems for DNA
mixture profiling." Theor. Pop. Biol 63: 191-205
399.
Moses, J. and M. Farrow (2003). A Procedure for Assessing the Influence of
Problem Domain on Effort Estimation Consistency. Software Quality J, 11, 283300
400.
Mossman, D. (2000). "Interpreting clinical evidence of malingering: a Bayesian
perspective." J Am Acad Psychiatry Law 28(3): 293-302
401.
Muller, P. and D. R. Insua (1998). "Issues in Bayesian Analysis of Neural
Network Models." Neural Comput 10(3): 749-70
402.
Murad, N. (2004). Research into and Devlepment of an Infrastructure Risk
management Model and Related Processes (with Eli Lilly and Co Ltd). MSc,
University of Surrey, Dept of Computing
403.
Murphy, K. (1998 ). "A Brief Introduction to Graphical Models and Bayesian
Networks."
404.
http://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html.
405.
Murphy, K. (1999). A variational approximation for Bayesian networks with
discrete and continuous latent variables. Uncertainty in AI, 15. K. Laskey and H.
Prade: 467-475
406.
Murphy, K. P. (2001). "The Bayes net toolbox for Matlab." Computing Science
and Statistics 33 http://www.cs.berkeley.edu/ murphyk/Bayes/bnt.html.
407.
Nasir, D., B. McCabe, et al. (2003). "Evaluating Risk in Construction–Schedule
Model (ERIC–S) Construction Schedule Risk Model." Journal of Construction
Engineering and Management 129(5): 518-527
408.
Neapolitan, R. E. (2004). Learning Bayesian Networks, Prentice Hall.
409.
Neff, J. A. and S. L. Crawford (1998). "The Health Belief Model and HIV risk
behaviours: a causal model analysis among Anglos, African-Americans and
Mexican-Americans." Ethn Health 3(4): 283-99
410.
Negrín, M. and F. Vázquez-Polo (2006). "Bayesian cost-effectiveness analysis
with two measures of effectiveness: the cost-effectiveness acceptability plane."
Health Econ 15(4): 363-72
411.
Neil, M. and N. Fenton (2005). Improved Methods for building large-scale
Bayesian Networks. The Third Bayesian Modeling Applications Workshop,
Uncertainty in Artificial Intelligence (UAI) 2005, Edinburgh University.
412.
Neil, M., N. Fenton, et al. (2003). Assessing Vehicle Reliability using Bayesian
Networks. Global Vehicle Reliability J. E. Strutt and P. L. Hall, Professional
Engineering Publishing: 25-42.
413.
Neil, M., N. Fenton, et al. (2007). Using Bayesian Networks and Simulation for
Data Fusion and Risk Analysis. NATO Science for Peace and Security Series:
Information and Communication Security. Skanata and D. M. Byrd, IOS Press,
Nieuwe Hemweg 6B, 1013 BG Amsterdam, The Netherlands. 13.
414.
Neil, M., N. Fenton, et al. (2000). "Building large-scale Bayesian Networks."
The Knowledge Engineering Review, 15(3) 15(3): 257-284
415.
Neil, M., N. Fenton, et al. (2005). "Using Bayesian networks to model expected
and unexpected operational losses." RISK ANALYSIS 25(4): 963-972
416.
Neil, M. and N. E. Fenton (1996). Predicting software quality using Bayesian
belief networks. Proc 21st Annual Software Eng Workshop. V. Basili. NASA
Goddard Space Flight Centre: 217-230
417.
Neil, M. and N. E. Fenton (1999). Applying Bayesian Belief Networks to
Critical Systems Assessment. Safety Critical Systems Club Newsletter, Centre
for Software Reliability. 8: 10-13
418.
Neil, M. and N. E. Fenton (2001). EPSRC IMPRESS (IMproving the software
PRocESS using Bayesian Networks) project final report, Queen Mary University
of London
http://www.dcs.qmul.ac.uk/research/radar/Projects/impress/impress%20igr.ht
ml.
419.
Neil, M. and N. E. Fenton (2003). Process Modelling and object oriented
Bayesian nets
420.
Neil, M., N. E. Fenton, et al. (2003). Modelling subjective causes and objective
consequences in Bayesian Networks. RADAR Tech Report TR101
421.
Neil, M., N. E. Fenton, et al. (2001). "Using Bayesian Belief Networks to Predict
the Reliability of Military Vehicles." IEE Computing and Control Engineering
Journal 12(1): 11-20
422.
Neil, M., P. Krause, et al. (2003). Software Quality Prediction Using Bayesian
Networks. Software Engineering with Computational Intelligence. T. M.
Khoshgoftaar, Kluwer.
423.
Neil, M., B. Littlewood, et al. (1996). Applying Bayesian belief networks to
systems dependability assessment. Safety-Critical Systems: the Convergence Of
High Tech and Human Factors; Proceedings of the 4th Safety Critical Systems
Symposium. F. Redmill, Springer Verlag: 71-93.
424.
Neil, M., B. Malcolm, et al. (2003). Modeling an Air Traffic Control
Environment Using Bayesian Belief Networks. 21st International System Safety
Conference Ottawa, Ontario, Canada
425.
Neil, M., D. Marquez, et al. (2008). "Using Bayesian Networks to Model the
Operational Risk to Information Technology Infrastructure in Financial
Institutions." Journal of Financial Transformation 22: 131-138
426.
Neil, M., M. Tailor, et al. (2006). Modeling Dependable Systems using Hybrid
Bayesian Networks. First International Conference on Availability, Reliability
and Security (ARES'06) IEEE Computer Society: 817-823
http://doi.ieeecomputersociety.org/10.1109/ARES.2006.83.
427.
Neil, M., M. Tailor, et al. (2007). "Inference in hybrid Bayesian networks using
dynamic discretization." Statistics and Computing 17(3): 219-233
http://dx.doi.org/10.1007/s11222-007-9018-y.
428.
Neil, M., M. Tailor, et al. (2008). "Modelling dependable systems using hybrid
Bayesian networks." Reliability Engineering and System Safety 93(7): 933-939
429.
Newton, A. C., E. Marshall, et al. (2006). "Use of a Bayesian belief network to
predict the impacts of commercializing non-timber forest products on
livelihoods." Ecology and Society 11(2): 24
430.
Newton, A. C., G. B. Stewart, et al. (2007). "Bayesian Belief Networks as a tool
for evidence-based conservation management." Journal for Nature Conservation
15(2): 144-160
431.
Ng, C. M. (2003). "Comparison of neural network, Bayesian, and multiple
stepwise regression-based limited sampling models to estimate area under the
curve." Pharmacotherapy 23(8): 1044-51
432.
Nguyen, S. T., H. T. Nguyen, et al. (2006). "Improved Head Direction Command
Classification using an Optimised Bayesian Neural Network." Conf Proc IEEE
Eng Med Biol Soc 1: 5679-82
433.
Niedermayer, D. An Introduction to Bayesian Networks and their Contemporary
Applications. http://www.gpfn.sk.ca/
434.
Nikiforidis, G. and G. Sakellaropoulos (1998). "Expert system support using
Bayesian belief networks in the prognosis of head-injured patients of the ICU."
Med Inform (Lond) 23(1): 1-18
435.
Nikolajewa, S., R. Pudimat, et al. (2007). "BioBayesNet: a web server for feature
extraction and Bayesian network modeling of biological sequence data." Nucleic
Acids Res 35(Web Server issue): W688-93
436.
Nikovski, D. (2000). "Constructing Bayesian Networks for Medical Diagnosis
from Incomplete and Partially Correct Statistics." IEEE Transactions on
Knowledge and Data Engineering 12(4): 509-518
437.
Nordmann, J. P. and G. Berdeaux (2007). "Use of a bayesian network to predict
the nighttime intraocular pressure peak from daytime measurements." Clin Ther
29(8): 1751-60
438.
Nouraei, S. A., Q. J. Huys, et al. (2007). "Screening patients with sensorineural
hearing loss for vestibular schwannoma using a Bayesian classifier." Clin
Otolaryngol 32(4): 248-54
439.
Nyberg, J. B., B. G. Marcot, et al. (2006). "Using Bayesian belief networks in
adaptive management." Canadian Journal of Forest Research 36: 3104-3116
440.
Oatley, G. C. and B. W. Ewart (2003). "Crimes analysis software: ‘pins in
maps’, clustering and Bayes net prediction." Expert Systems with Applications
25(4): 569-588
441.
Ogawa, N. and R. W. Hodge (1983). "Towards a causal model of childbearing
and abortion attitudes in contemporary Japan." Popul Res Leads(No. 15): 1-32
442.
Olesen, K. G. (1993). "Causal probabilistic networks with both discrete and
continuous variables."
443.
Oliver, R. M. and J. Q. Smith (1990). Belief Nets and Decision Analysis. J
Wiley & Sons
444.
Olson, J. T., J. W. Rozenblit, et al. (2007). "Hardware/Software Partitioning
Using Bayesian Belief Networks." Systems, Man and Cybernetics, Part A, IEEE
Transactions on 37(5): 655-668
445.
Onisko, A., M. J. Druzdzel, et al. (2000). Learning Bayesian Network
Parameters from Small Data Sets: Application of Noisy-OR Gates. In Workshop
on �Bayesian and Causal Networks: From Inference to Data Mining, 12th
European Conference on Artificial Intelligence (ECAI-2000), Berlin
446.
Onisko, A., M. J. Durzdel, et al. (1998). "A probabilistic causal model for
diagnosis of liver disorders."
447.
Orre, R., A. Bate, et al. (2005). "A bayesian recurrent neural network for
unsupervised pattern recognition in large incomplete data sets." Int J Neural Syst
15(3): 207-22
448.
Padman, R., X. Bai, et al. (2007). "A new machine learning classifier for high
dimensional healthcare data." Stud Health Technol Inform 129: 664-8
449.
Pang, B. C., V. Kuralmani, et al. (2007). "Hybrid outcome prediction model for
severe traumatic brain injury." J Neurotrauma 24(1): 136-46
450.
Paraskevis, D., E. Magiorkinis, et al. (2004). "Phylogenetic reconstruction of a
known HIV-1 CRF04_cpx transmission network using maximum likelihood and
Bayesian methods." J Mol Evol 59(5): 709-17
451.
Patel, R., F. Bowman, et al. (2006). "A Bayesian approach to determining
connectivity of the human brain." Hum Brain Mapp 27(3): 267-76
452.
Pearl, J. (1986). "Fusion, propagation, and structuring in belief networks."
453.
Pearl, J. (1988). Probabilistic reasoning in intelligent systems.
454.
Pearl, J. (1995). "Causal inference from indirect experiments." Artif Intell Med
7(6): 561-82
455.
Pearl, J. (2000). Causality: Models Reasoning and Inference, Cambridge
University Press.
456.
Peek, N., M. Verduijn, et al. (2007). "Bayesian networks for multivariate data
analysis and prognostic modelling in cardiac surgery." Stud Health Technol
Inform 129: 596-600
457.
Pe'er, D. (2005). "Bayesian network analysis of signaling networks: a primer."
Sci STKE 2005(281): pl4
458.
Pena, J. M., J. Bjorkegren, et al. (2005). "Growing Bayesian network models of
gene networks from seed genes." Bioinformatics 21 Suppl 2: ii224-9
459.
Pendharkar, P. C., G. H. Subramanian, et al. (2005). "A Probabilistic Model for
Predicting Software Development Effort." IEEE Transactions on Software
Engineering 31(7): 615-624
460.
Peng, S. Y., K. C. Wu, et al. (2007). "Predicting postoperative nausea and
vomiting with the application of an artificial neural network." Br J Anaesth
98(1): 60-5
461.
Penny, W. D. and S. J. Roberts (1999). "Bayesian neural networks for
classification: how useful is the evidence framework?" Neural Netw 12(6): 877892
462.
Pérez-Miñana, E. and J.-J. Gras (2006). "Improving fault prediction using
Bayesian networks for the development of embedded software applications:
Research Articles." Softw. Test. Verif. Reliab. 16(3): 157-174
http://dx.doi.org/10.1002/stvr.v16:3.
463.
Petersen, M. L., S. E. Sinisi, et al. (2006). "Estimation of direct causal effects."
Epidemiology 17(3): 276-84
464.
Peyrot, M. (1996). "Causal analysis: theory and application." J Pediatr Psychol
21(1): 3-24
465.
Phillips, L. D., P. Humphreys, et al. (1990). A socio-technical approach to
assessing human reliability. Chapter 11 in 'Belief Nets and Decision Analysis',
Oliver RM and Smith JQ (eds), Wiley
466.
Pietz, K., M. M. Byrne, et al. (2006). "A decision-theoretic approach to
identifying future high-cost patients." Med Care 44(9): 842-9
467.
Polley, M. J., D. A. Winkler, et al. (2004). "Broad-based quantitative structureactivity relationship modeling of potency and selectivity of farnesyltransferase
inhibitors using a Bayesian regularized neural network." J Med Chem 47(25):
6230-8
468.
Pourret, O., P. Naim, et al., Eds. (2008). Bayesian Networks: A Practical Guide
to Applications (Statistics in Practice), John Wiley and Sons Ltd
469.
Price, G. J., W. G. McCluggage, et al. (2003). "Computerized diagnostic
decision support system for the classification of preinvasive cervical squamous
lesions." Hum Pathol 34(11): 1193-203
470.
Price, J. L. and C. W. Mueller (1981). "A causal model for turnover for nurses."
Acad Manage J 24(3): 543-65
471.
Radliński, Ł., N. E. Fenton, et al. (2007). Improved Decision-Making for
Software Managers Using Bayesian Networks. 11th IASTED Int. Conf.
Software Engineering and Applications (SEA). Cambridge, MA, USA 13–19
472.
Radliński, Ł., N. E. Fenton, et al. (2007). "Modelling Prior Productivity and
Defect Rates in a Causal Model for Software Project Risk Assessment." Polish
Journal of Environmental Studies 16(4A): 256-260
473.
Ramoni, M. and P. Sebastiani (1998). Bayesian Methods for Intelligent Data
Analysis. Knowledge Media Institute, The Open University, KMI-TR-67
474.
Ramoni, M. and P. Sebastiani (1998). Parameter Estimation in Bayesian
Networks from Incomplete Databases. Intelligent Data Analysis, 2(1)
475.
Ratcliffe, B. and A. L. Rollo (1990). "Adapting function point analysis to
Jackson System Development."
476.
Raval, A., Z. Ghahramani, et al. (2002). "A Bayesian network model for protein
fold and remote homologue recognition." Bioinformatics 18(6): 788-801
477.
Reynolds, G. M., A. C. Peet, et al. (2007). "Generating prior probabilities for
classifiers of brain tumours using belief networks." BMC Med Inform Decis
Mak 7(1): 27
478.
Riviere, C., P. Lauret, et al. (2006). "A Bayesian Neural Network approach to
estimating the Energy Equivalent Speed." Accid Anal Prev 38(2): 248-59
479.
Robertson, B. and T. Vignaux (1995). Interpreting Evidence: Evaluating
Forensic Science in the Courtroom, John Wiley and Son Ltd.
480.
Robertson, B. and T. Vignaux. (2007). "The Bayesian Evidence Page."
481.
http://www.mcs.vuw.ac.nz/~vignaux/evidenceindex.html.
482.
Robins, J. M. and S. Greenland (1986). "The role of model selection in causal
inference from nonexperimental data." Am J Epidemiol 123(3): 392-402
483.
Robles, V., P. Larrañaga, et al. (2004). "Bayesian network multi-classifiers for
protein secondary structure prediction." Artif Intell Med 31(2): 117-36
484.
Rothman, K. J. and S. Greenland (2005). "Causation and causal inference in
epidemiology." Am J Public Health 95 Suppl 1: S144-50
485.
Sabatti, C. and L. Rohlin (2004). "A Bayesian approach to expression network
component analysis." Conf Proc IEEE Eng Med Biol Soc 4: 2933-6
486.
Sachs, K., D. Gifford, et al. (2002). "Bayesian network approach to cell signaling
pathway modeling." Sci STKE 2002(148): PE38
487.
Sakellaropoulos, G. C. and G. C. Nikiforidis (1999). "Development of a
Bayesian Network for the prognosis of head injuries using graphical model
selection techniques." Methods Inf Med 38(1): 37-42
488.
Sakellaropoulos, G. C. and G. C. Nikiforidis (2000). Prognostic performance of
two expert systems based on Bayesian belief networks. Decision Support
Systems 27, 431-442
489.
Saks, M. J. and W. C. Thompson (2003). Assessing Evidence: Proving Facts.
Handbook of Psychology in Legal Contexts (Second Edition). D. Carson and R.
Bull.
490.
Sandberg, A., A. Lansner, et al. (2002). "A Bayesian attractor network with
incremental learning." Network 13(2): 179-94
491.
Sanders, D. and D. Aronsky (2006). "Detecting asthma exacerbations in a
pediatric emergency department using a Bayesian network." AMIA Annu Symp
Proc: 684-8
492.
Sanders, D. and D. Aronsky (2006). "Prospective evaluation of a Bayesian
Network for detecting asthma exacerbations in a Pediatric Emergency
Department." AMIA Annu Symp Proc: 1085
493.
Sanders, D. L. and D. Aronsky (2006). "Detecting asthma exacerbations in a
pediatric emergency department using a Bayesian network." AMIA Annu Symp
Proc: 684-8
494.
Schachter, A. D., M. F. Ramoni, et al. (2007). "Economic evaluation of a
bayesian model to predict late-phase success of new chemical entities." Value
Health 10(5): 377-85
495.
Schaffner, K. F. (1993). "Clinical trials and causation: Bayesian perspectives."
Stat Med 12(15-16): 1477-94; discussion 1495-9
496.
Schmitt, S. A. (1969). Measuring Uncertainty: An Elementary Introduction to
Bayesian Statistics.
497.
Schriger, D., L. Baraff, et al. (1995). "EDECS: the Emergency Department
Expert Charting System." Medinfo 8 Pt 2: 1665
498.
Schurink, C., P. Lucas, et al. (2005). "Computer-assisted decision support for the
diagnosis and treatment of infectious diseases in intensive care units." Lancet
Infect Dis 5(5): 305-12
499.
Schwartz, A. R., W. Gerin, et al. (2003). "Toward a causal model of
cardiovascular responses to stress and the development of cardiovascular
disease." Psychosom Med 65(1): 22-35
500.
Sebastiani, P., V. G. Nolan, et al. (2007). "A network model to predict the risk of
death in sickle cell disease." Blood 110(7): 2727-35
501.
Shaffer, M. L. and V. M. Chinchilli (2004). "Bayesian inference for randomized
clinical trials with treatment failures." Stat Med 23(8): 1215-28
502.
Shek, T. W. (1996). "Bayesian Belief Network in histopathology." J Clin Pathol
49(10): 864
503.
Shenoy, P. and G. Shafer (1990). Axioms for probability and belief-function
propagation. Readings in uncertain reasoning, Morgan Kaufmann Publishers Inc:
575 - 610.
504.
Sierra, B. and P. Larranaga (1998). "Predicting survival in malignant skin
melanoma using Bayesian networks automatically induced by genetic
algorithms. An empirical comparison between different approaches." Artif Intell
Med 14(1-2): 215-30
505.
Sierra, B., N. Serrano, et al. (2001). "Using Bayesian networks in the
construction of a bi-level multi-classifier. A case study using intensive care unit
patients data." Artif Intell Med 22(3): 233-48
506.
Sigurdsson, J. H., L. A. Walls, et al. (2001). "Bayesian belief nets for managing
expert judgement and modelling reliabilit." Quality and Reliability Engineering
International 17(3 ): 181 - 190
507.
Simon, C., P. Weber, et al. (2007). "Bayesian networks inference algorithm to
implement Dempster Shafer theory in reliability analysis." Reliab Eng Syst
Safety 10.1016/j.ress.2007.03.012.
508.
Simon, C., P. Weber, et al. (2007). "Bayesian Networks and Evidence Theory to
Model Complex Systems." Reliability Journal of Computers 2(1): 33-43
509.
Singh, M. and M. Valtorta (1995). "Construction of Bayesian network structures
from data: a brief survey and an efficient algorithm." International Journal of
Approximate Reasoning (IJAR) 12: 111-131
510.
Skaanning, C. (2000). A Knowledge Acquisition Tool for Bayesian-Network
Troubleshooters. Sixteenth Conference on Uncertainty in Artificial Intelligence.
Stanford, CA: Stanford University
511.
Skaanning, C. (2003). Automated diagnosis of printer systems using Bayesian
networks, US Patent 6535865 www.patentstorm.us/patents/6535865.html.
512.
Skaanning, C., F. J. Jensen, et al. (2000). Printer Troubleshooting Using
Bayesian Networks. LECTURE NOTES IN COMPUTER SCIENCE, ISSU
1821, 367-379.
513.
Smets, P. (1993). "Belief functions: the disjunctive rule of combination and the
generalized Bayesian theorem." Int J Approx Reason 9(1): 1-35
514.
Smets, P. and K. R. (1994). "The transferable belief model." Artif Intell Med 66:
191-243
515.
Smith, C. S., A. L. Howes, et al. (2007). "Using a Bayesian belief network to
predict suitable habitat of an endangered mammal – The Julia Creek dunnart
(Sminthopsis douglasi)." Biological Conservation 139(3-4): 333-347
516.
Smith, J. Q. and J. Croft (2003). "Bayesian networks for discrete multivariate
data: an algebraic approach to inference." J. of Multivariate Analysis 84: 387402
517.
Spiegelhalter, D., A. Dawid, et al. (1993). "Bayesian analysis in expert systems."
Stat Sci 8: 219-83
518.
Spiegelhalter, D. J., A. P. Dawid, et al. (1991). "Probabilistic expert systems and
graphical modelling: a case study in drug safety." Phil. Trans. R. Soc. Lond. 337:
387-405
519.
Spiegelhalter, D. J. and S. L. Lauritzen (1990). "Sequential Updating of
Conditional Probabilities on Directed Graphical Structure." NETWORKS 20:
579-606
520.
Spirtes, P., C. Glymour, et al. (2000). Causation, Prediction, and Search,
Adaptive Computation and Machine Learning. Cambridge, Massachusetts, MIT
Press.
521.
Spirtes, P. L. (2002). Data mining tasks and methods: Probabilistic and casual
networks: methodology for probabilistic networks, Handbook of data mining and
knowledge discovery. New York, NY, Oxford University Press, Inc., .
522.
Srinivas, S. (1993). A Generalization of the Noisy-Or Model. Ninth Conference
on Uncertainty in Artificial Intelligence: 208-218
523.
Stamelosa, I., L. Angelisa, et al. (2005). "On the use of Bayesian belief networks
for the prediction of software productivity." Information and Software Tech 45
(1): 51-60
524.
Stiber, N., M. Small, et al. (2004). "Site-specific updating and aggregation of
Bayesian belief network models for multiple experts." Risk Anal 24(6): 1529-38
525.
Suebnukarn, S. and P. Haddawy (2006). "A Bayesian approach to generating
tutorial hints in a collaborative medical problem-based learning system." Artif
Intell Med 38(1): 5-24
526.
Suermondt, H. J. (1992). Explanation in Bayesian Belief Networks. Department
of Computer Science and Medicine Stanford, CA, Stanford University. PhD
527.
Sun, W., G. M. Zeng, et al. (2005). "Bayesian regularized BP neural network
model for quantitative relationship between the electrochemical reduction
potential and molecular structures of chlorinated aromatic compounds." Huan
Jing Ke Xue 26(2): 21-7
528.
Suzuki, J. (1996). Learning Bayesian belief networks based on the MDL
principle: An efficient algorithm using the branch and bound technique.
Proceedings of the international conference on machine learning. Bally, Italy
529.
Suzuki, K., H. Yoshida, et al. (2006). "Massive-training artificial neural network
(MTANN) for reduction of false positives in computer-aided detection of
polyps: Suppression of rectal tubes." Med Phys 33(10): 3814-24
530.
Tailor, M., M. Neil, et al. (2003). Bayesian Net propagation algorithms
531.
Tamada, Y., H. Bannai, et al. (2005). "Utilizing evolutionary information and
gene expression data for estimating gene networks with bayesian network
models." J Bioinform Comput Biol 3(6): 1295-313
532.
Tamada, Y., S. Kim, et al. (2003). "Estimating gene networks from gene
expression data by combining Bayesian network model with promoter element
detection." Bioinformatics 19 Suppl 2: ii227-36
533.
Tang, A., A. Nicholson, et al. (2007). "Using Bayesian belief networks for
change impact analysis in architecture design
534.
" Journal of Systems and Software 80(1): 127-148
535.
Tang, Z., M. J. Taylor, et al. (2005). "Quantitative risk modelling for new
pharmaceutical compounds." Drug Discov Today 10(22): 1520-6
536.
Taroni, F., C. Aitken, et al. (2006). Bayesian Networks and Probabilistic
Inference in Forensic Science John Wiley & Sons.
537.
Taroni, F. and A. Biedermann (2005). Inadequacies of posterior probabilities for
the assessment of scientific evidence. Law Probablity and Risk 4: 89-114
538.
Taroni, F., A. Biedermann, et al. (2004). "A general approach to Bayesian
networks for the interpretation of evidence." Forensic Science International
139(1): 5-16
http://www.sciencedirect.com/science/article/B6T6W4B70FWS-2/2/00e9c4977552133141d6728478399ba9.
539.
Taroni, F., S. Bozza, et al. (2005). "Decision Analysis in forensic science."
Journal of Forensic Sciences 50: 894-905
540.
Taroni, F., S. Bozza, et al. (2006). "Two items of evidence, no putative source:
an inference problem in forensic intelligence." J Forensic Sci 51(6): 1350-61
541.
Tattari, S., T. Schultz, et al. (2003). "Use of belief network modelling to assess
the impact of buffer zones on water protection and biodiversity." Agriculture,
Ecosystems & Environment 96(1-3): 119-132
542.
Tepes, B., L. Szirovicza, et al. (2005). "Causal Bayesian network for tagging
syntactical structure of Croatian sentences." Coll Antropol 29(2): 731-3
543.
The Economist (2001). Son of paperclip, 22 March 2001
http://www.cs.ubc.ca/~murphyk/Bayes/econ.22mar01.html.
544.
Thomas, A., D. J. Spiegelhalter, et al. (1992). BUGS: A program to perform
Bayesian inference using Gibbs sampling. Bayesian Statistics, . J. M. Bernardo,
J.O. Berger, A. P. Dawid and A. F. Smith, University Press, Oxford. 4: 837-842.
545.
Thompson, W. C. and E. L. Schumann (1987). "Interpretation of statistical
evidence in criminal trials." Law and Human Behavior 11(3): 167-187
http://dx.doi.org/10.1007/BF01044641.
546.
Tian, L. and A. Noore (2004). "Software reliability prediction using recurrent
neural network with Bayesian regularization." Int J Neural Syst 14(3): 165-74
547.
Ticehurst, J. L., L. H. Newham, et al. (2007). "A Bayesian network approach for
assessing the sustainability of coastal lakes in New South Wales, Australia."
Environ. Model. Softw. 22(8): 1129-1139
548.
Tienda-Luna, I. M., Y. Yin, et al. (2007). "Inferring the skeleton cell cycle
regulatory network of malaria parasite using comparative genomic and
variational Bayesian approaches." Genetica
549.
Tong, S. and D. Koller (2001). "Active Learning for Parameter Estimation in
Bayesian Networks." ADVANCES IN NEURAL INFORMATION
PROCESSING SYSTEMS ISSU 13: 647-653
550.
Tonglet, R., M. Mudosa, et al. (1992). "The causal model approach to nutritional
problems: an effective tool for research and action at the local level." Bull World
Health Organ 70(6): 715-23
551.
Trucco, P., E. Cagnoa, et al. (2007). "A Bayesian Belief Network modelling of
organisational factors in risk analysis: A case study in maritime." Reliability
Engineering & System Safety 93(6): 845-856
552.
Tucker, A., V. Vinciotti, et al. (2005). "A spatio-temporal Bayesian network
classifier for understanding visual field deterioration." Artif Intell Med 34(2):
163-77
553.
Tudor, R. S., R. Hovorka, et al. (1998). "DIAS-NIDDM--a model-based decision
support system for insulin dose adjustment in insulin-treated subjects with
NIDDM." Comput Methods Programs Biomed 56(2): 175-91
554.
Twardy, C., A. E. Nicholson, et al. (2006). "Epidemiological data mining of
cardiovascular Bayesian networks." Electronic Journal of Health Informatics
1(1): 1-13
http://www.ejhi.net.
555.
Van den Hurk, M. M., D. H. Dolmans, et al. (2001). "Testing a causal model for
learning in a problem-based curriculum." Adv Health Sci Educ Theory Pract
6(2): 141-9
556.
van der Gaag, L. C., S. Renooij, et al. (2002). "Probabilities for a Probabilistic
Network: A Case-study in Oesophageal Cancer." Artif Intell Med 25(2): 123-48
557.
van Engelen, R. A. (1997). "Approximating Bayesian belief networks by arc
removal." Pattern Analysis and Machine Intelligence, IEEE Transactions on
19(8): 916-920
558.
van Koten, C. and A. R. Gray (2006). "Bayesian statistical effort prediction
models for data-centred 4GL software development." Information and Software
Technology 48(11 ): 1056-1067
559.
Varis, O. (1998). "A belief network approach to parameter estimation:
application to resource and environmental management." Artificial Intelligence
101: 135-163
560.
Verduijn, M., P. M. Rosseel, et al. (2007). "Prognostic Bayesian networks I:
Rationale, learning procedure, and clinical use." J Biomed Inform
561.
Verduijn, M., P. M. Rosseel, et al. (2007). "Prognostic Bayesian networks II: An
application in the domain of cardiac surgery." J Biomed Inform
562.
Vineis, P. and D. Kriebel (2006). "Causal models in epidemiology: past
inheritance and genetic future." Environ Health 5: 21
563.
Vivarelli, F. and C. K. Williams (2001). "Comparing Bayesian neural network
algorithms for classifying segmented outdoor images." Neural Netw 14(4-5):
427-37
564.
Vomlel, J. (2004). "Bayesian networks in educational testing." Int. J. Uncertain.
Fuzziness Knowl.-Based Syst. 12(SUPPLEMENT): 83-100
565.
Waldmann, M. R. (2000). "Competition among causes but not effects in
predictive and diagnostic learning." Journal of experimental psychology:
Learning, memory and cognition 26(1): 53-76
566.
Waldmann, M. R. (2001). "Predictive versus diagnostic causal learning:
evidence from an overshadowing paradigm." Psychonomic Bulletin & Review 8:
600-608
567.
Waldmann, M. R. and L. Martignon (1999). A Bayesian network model of
causal learning. Proceeding of the 20th annual conference of the Cognitive
Science Society. M. A. Gernsbasher and S. J. Derry. Mahwah, NJ, Erlbaum
568.
Wang, H. and M. J. Druzdel User interface tools for navigation inc onditional
probability tables and eliciation of probabilities in Bayesian networks. School of
Information Sciences & Intelligent Systems, University of Pittsburgh, PA 15260,
www.sis.pitt.edu/
569.
Wang, H., F. Peng, et al. (2006). Software Project Level Estimation Model
Framework based on Bayesian Belief Networks. Sixth International Conference
on Quality Software (QSIC'06) 209-218
570.
Wang, M., Z. Chen, et al. (2007). "A hybrid Bayesian network learning method
for constructing gene networks." Comput Biol Chem 31(5-6): 361-72
571.
Wang, X. H., B. Zheng, et al. (1999). "Computer-assisted diagnosis of breast
cancer using a data-driven Bayesian belief network." Int J Med Inform 54(2):
115-26
572.
Wang, Y. H., Y. Li, et al. (2005). "An in silico approach for screening flavonoids
as P-glycoprotein inhibitors based on a Bayesian-regularized neural network." J
Comput Aided Mol Des 19(3): 137-47
573.
Washington, S. and J. Oh (2006). "Bayesian methodology incorporating expert
judgment for ranking countermeasure effectiveness under uncertainty: example
applied to at grade railroad crossings in Korea." Accid Anal Prev 38(2): 234-47
574.
Wasyluk, H., A. Oniśko, et al. (2001). "Support of diagnosis of liver disorders
based on a causal Bayesian network model." Med Sci Monit 7 Suppl 1: 327-32
575.
Watthayu, W. and Y. Peng (2004). A Bayesian Network Based Framework for
Multi-Criteria Decision-Making MCDM 2004. Whistler, B. C. Canada
576.
Weber, P. and L. Jouffe (2006). "Complex system reliability modelling with
Dynamic Object Oriented Bayesian Networks (DOOBN)." Reliability
Engineering and System Safety 91(2): 149-162
577.
Weber, P., M. P, et al. (2004). Dynamic Bayesian Networks modelling the
dependability of systems with degradations and exogenous constraints. 11th
IFAC symposium on information control problems in manufacturing
(INCOM’04). Salvador-Bahia, Brazil
578.
Weber, P. and M.-C. Suhner (2002). An application of Bayesian Networks to the
Performance Analysis of a Process European Conference on System
Dependability and Safety (ESRA 2002/lambda-Mu13). Lyon, France
579.
Weber, P., M.-C. Suhner, et al. (2001). System approach-based Bayesian
Network to aid maintenance of manufacturing process. 6th IFAC Symposium on
Cost Oriented Automation, Low Cost Automation. Germany
580.
Weber, P., D. Theilliol, et al. (2006). .Increasing effectiveness of model-based
fault diagnosis: A Dynamic Bayesian Network design for decision making. 6th
IFAC Symposium on Fault Detection, Supervision and Safety of technical
processes. China
581.
Wellman, M. P. (1990). "Fundamental concepts of qualitative probabilistic
networks."
582.
Whimster, W. F., P. W. Hamilton, et al. (1996). "Reproducibility of Bayesian
belief network assessment of breast fine needle aspirates." Anal Quant Cytol
Histol 18(4): 267-74
583.
White, S. (1996). "Decision-support systems in dentistry." J Dent Educ 60(1):
47-63
584.
Williams, S. J., S. M. Shortell, et al. (1978). "A causal model of health services
for diabetic patients." Med Care 16(4): 313-26
585.
Wilson, A. G. and A. V. Huzurbazar (2007). "Bayesian networks for multilevel
system reliability
586.
" Reliability Engineering & System Safety 92(10): 1413-1420
587.
Wilson, W. I., Y. Peng, et al. (2005). "Comparison of statistical analysis and
Bayesian Networks in the evaluation of dissolution performance of BCS Class II
model drugs." J Pharm Sci 94(12): 2764-76
588.
Winkler, R. L. (1972). An Introduction to Bayesian Inference and Decision.
589.
Winkler, R. L. (2001). "WHY BAYESIAN ANALYSIS HASN'T CAUGHT ON
IN HEALTHCARE DECISION MAKING." International Journal of
Technology Assessment in Health Care 17: 56-66
590.
Wolbrechte, Bruced'Ambrosio, et al. (2000). Monitoring and diagnosis of a
multistage manufacturing process using Bayesian networks. Artificial
Intelligence for Engineering Design, Analysis and Manufacturing 14 (1), 53-67.
591.
Wolfle, L. M. and L. W. Bryant (1978). "A causal model of nursing education
and state board examination scores." Nurs Res 27(5): 311-5
592.
Wong, W. K., G. Cooper, et al. (2005). "Use of multiple data streams to conduct
Bayesian biologic surveillance." MMWR Morb Mortal Wkly Rep 54 Suppl: 639
593.
Wooff, D. A., M. Goldstein, et al. (2002). Bayesian graphical models for
software testing. IEEE Transactions on Software Engineering, 28(5), 510 - 525
594.
Wooff, D. A. and J. M. Schneider (2006). "A Bayesian belief network for quality
assessment: application to employment officer support." J Intellect Disabil Res
50(Pt 2): 109-26
595.
Xiang, Z., R. M. Minter, et al. (2007). "miniTUBA: medical inference by
network integration of temporal data using Bayesian analysis." Bioinformatics
23(18): 2423-32
596.
Xie, Y., D. Lord, et al. (2007). "Predicting motor vehicle collisions using
Bayesian neural network models: an empirical analysis." Accid Anal Prev 39(5):
922-33
597.
Xu, M., G. M. Zeng, et al. (2005). "Application of Bayesian regularized BP
neural network model for analysis of aquatic ecological data-a case study of
chlorophyll-a prediction in Nanzui water area of Dongting Lake." J Environ Sci
(China) 17(6): 946-52
598.
Yu, J. and X. W. Chen (2005). "Bayesian neural network approaches to ovarian
cancer identification from high-resolution mass spectrometry data."
Bioinformatics 21 Suppl 1: i487-94
599.
Yu, J., V. A. Smith, et al. (2004). "Advances to Bayesian network inference for
generating causal networks from observational biological data." Bioinformatics
20(18): 3594-603
600.
Yuan, C. and M. J. Druzdzel (2005). "Importance sampling algorithms for
Bayesian networks: Principles and performance." Mathematical and Computer
Modeling 43(9-10): 1189-1207
601.
Zelic, I., I. Kononenko, et al. (1997). "Induction of decision trees and Bayesian
classification applied to diagnosis of sport injuries." J Med Syst 21(6): 429-44
602.
Zhang, R., G. McAllister, et al. (2005). "Coupling wavelet transform with
bayesian network to classify auditory brainstem responses." Conf Proc IEEE Eng
Med Biol Soc 7: 7568-71
603.
Zhou, Z., G. Jin, et al. (2006). Reliability Analysis of Multistate Systems Based
on Bayesian Networks. Proceedings of the 13th Annual IEEE International
Symposium and Workshop on Engineering of Computer Based Systems, IEEE
Computer Society: 344-352
604.
Zhu, J., A. Jambhekar, et al. (2006). "A Bayesian Network Driven Approach to
Model the Transcriptional Response to Nitric Oxide in Saccharomyces
cerevisiae." PLoS ONE 1: e94
605.
Zhu, W., J. Yan, et al. (2006). "Application of Bayesian network in syndrome
differentiation system of traditional Chinese medicine." Zhong Xi Yi Jie He Xue
Bao 4(6): 567-71
606.
Ziv, H. and D. J. Richardson (1997). Bayesian-network confirmation of software
testing uncertainties. ESEC
607.
Zou, M. and S. Conzen (2005). "A new dynamic Bayesian network (DBN)
approach for identifying gene regulatory networks from time course microarray
data." Bioinformatics 21(1): 71-9
608.
Zweig, G. (1998). Speech Recognition with Dynamic Bayesian Networks,
University of California at Berkeley. PhD
http://www.icsi.berkeley.edu/ftp/global/pub/speech/papers/zweig_thesis.pdf.