Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Assignment: Problem Set 1 Name: Juan Wang Program: E&E Instructor: Dr. Ming Xu Due Date: Sept. 13, 2004 P14: 3,4,5,6 3. Solve the following equations (a) 2 x 4 6 Solution: 2x 4 6 2x 6 4 2x 10 , or 2 x 2 So, x 5 , or x 1 (b) x 3 2 Solution: x 3 2 x 2 3 So, x 5 , or x 1 (c) 2 x 3 5 Solution: 2x 3 5 2x 5 3 2 x 2 , or 2 x 8 So, x 1, or x 4 (d) 7 3x 2 No solutions for this problem because 7 3x 0 . 4. Solve the following equations (a) 2 x 4 5x 2 Solution: 2x 4 5x 2 , or 2 x 4 (5 x 2) 3x 6 , or 7 x 2 2 So, x 2 , or x 7 (b) 5 3u 3 2u Solution: 5 3u 3 2u , or 5 3u (3 2u ) 5u 2 , or u 8 2 So, u , or u 8 5 1 t 3 t2 2 2 t 3 t 3 Solution: 4 t 2 , or 4 ( t 2) 2 2 2 2 t 6 ,or 2t 2 So, t 6 ,or t 1 (c) 4 (d) 2s 3 7 s Solution: 2s 3 7 s , or 2s 3 (7 s) 3s 10 ,or s 4 10 So, s , or s 4 3 5. Solve the following inequalities (a) 5x 2 4 Solution: 4 5x 2 4 2 5x 6 2 6 So, x 5 5 (b) 1 3x 8 Solution: 1 3x 8 , or 1 3x 8 3x 7 , or 3x 9 7 So, x , or x 3 3 (c) 7 x 4 3 Solution: 7 x 4 3 , or 7 x 4 3 7 x 1, or 7 x 7 1 So, x , or x 1 7 (d) 6 5x 7 Solution: 7 6 5x 7 13 5x 1 1 13 So, x 5 5 2 6. Solve the following inequalities (a) 2 x 3 6 Solution: 6 2x 3 6 9 2x 3 9 3 So, x 2 2 (b) 3 4 x 2 Solution: 3 4x 2 , or 3 4x 2 4x 1, or 4x 5 1 5 So, x , or x 4 4 (c) x 5 1 Solution: 1 x 5 1 So, 6 x 4 (d) 7 2 x 0 No solutions for this problem. P15: 46-53 46. Assume Seeds= a (biomass) Substitute biomass= 217g, seeds=17 into the equation So, 17 = 217a a = 0.0783 The equation is Seeds = 0.0783(biomass). 47. 1 ft = 0.305 m 1 ft 1m = 0.305 1 2 2 12 m 2 ( ) ft 0.305 1m 2 10.750 ft 2 48. 1ha 10,000m 2 ,1acre 4046.86m 2 So, 1ha 10,000m 2 1acre 4046.86m 2 1ha 2.47 1acre 1ha 2.47acre 49. 1liter 33.81ounces 3 1liter 33.81 1ounce (a) ( y )(liters ) ( y 33.81)(ounces) ( x)(ounces) x y 33.81 (b) Substitute x 12ounces into the above equation, 12 0.35liters We can get y 33.81 50. 1mile 1.609kilometers 1kilometer 1 1mile 1.609 (a) ( y )( kilomaters) ( y )( 1 miles ) ( x)( miles ) 1.609 y 1.609 x (b) Substitute x 261miles into the equation, We can get y 419.949kilometers 51. (a) We can use the equation we get from problem 50 and substitute x 55miles into the equation. Then, y 1.609 * 55 88.495kilometers . So the speed limit on many U.S. highways is 88.49 kilometers per hour. (b) We can substitute y 130kilometers into the equation, then we get y 130 x 80.796miles 1.609 1.609 So, the recommended speed limit on German highways is 80.796 miles per hour. 52. (a) Assume the linear relation between temperature measured in Celsius and temperature measured in Fahrenheit is y ax b Where x is the temperature measured in Fahrenheit; y is the temperature measured in Celsius. Then we can substitute y 0 C , x 32 F , and y 100 C , x 212 F into the equation. We get 0 32a b and 100 212a b 100 5 160 , b Solving this set of equations, we know that a 180 9 9 5 160 So the linear equation is y x 9 9 (b) Substitute x 97.6 F and x 99.6 F into the equation, We get y 36.4 C and y 37.56 C So the normal body temperature in humans ranges from 36.4 C to 37.56 C . 4 53.(a) Assume the linear relation between temperature measured in Celsius and temperature measured in Kelvin is y ax b Where x is the temperature measured in Kelvin; y is the temperature measured in Celsius. We know that 1K denotes the temperature difference as 1 C , so we can get y 1 a( x 1) b y ax a b 1 Combined with the equation y ax b , we get a 1 So the equation can be simplified as y x b Then we substitute y 273.15 C , x 0K into the simpler equation, We get b 273.15 So, the equation relates the Kelvin and Celsius scales is y x 273.15 (b) Substitute x nitrogen 77.4 K , and xoxygen 90.2 K into the equation, respectively. We get the boiling point temperature of nitrogen is -195.75 C , and the boiling point temperature of oxygen is 182.95 C . (c) Substitute ynitrogen 195.75 C , and yoxygen 182.95 C into the equation 5 160 x 9 9 x is the temperature measured in Fahrenheit; y is the temperature measured in Celsius. y Where We get xnitrogen 320.35 F , and xoxygen 297.31 F (d) Nitrogen gets distilled first because its boiling point is lower than that of oxygen. P16: 63-76 63.(a) 75 75 * (b) 180 180 17 17 * 12 12 64.(a) 15 15 * 5 12 255 180 12 (b) 3 3 180 * 135 4 4 5 3 3 2 65.(a) sin( ) sin( ) sin( ) sin( ) 4 4 4 4 2 5 3 (b) cos( ) cos( ) cos( ) 6 6 6 2 5 3 3 2 3 (c) tan( ) 1 3 cos( ) 3 2 sin( ) 3 2 66.(a) sin( ) sin( ) 4 4 2 13 13 3 (b) cos( ) cos( ) cos( 2 ) cos( ) 6 6 6 6 2 4 (c) tan( ) tan( ) tan( ) 3 3 3 3 1 3, 2 4 5 We find , or [0,2 ) 3 3 4 5 The solution set is therefore { , } 3 3 (b) Solving tan 3 4 We find , or [0,2 ) 3 3 4 The solution set is therefore { , } 3 3 67.(a) Solving sin 1 2, 2 3 5 We find , or [0,2 ) 4 4 3 5 The solution set is therefore { , } 4 4 (b) Solving sec 2 , 1 2 We find sec cos 1 5 So cos , , or 2 3 3 5 The solution set is therefore { , } 3 3 68.(a) Solving cos 6 69. sin 2 cos 2 1 sin 2 cos 2 1 2 cos cos 2 1 tan 2 sec 2 70. sin 2 cos 2 1 sin 2 cos 2 1 2 sin sin 2 2 2 1 cot csc 71. Solve 2 cos sin sin on [0,2 ) . Solution: sin (2 cos 1) 0 That is, sin 0 or 2 cos 1 0 Solving sin 0 , we find 0 or 0 Solving 2 cos 1 0 , we get 1 cos 2 5 Which yields or 3 3 5 The solution set is therefore {0, , , }. 3 3 72. Solve sec 2 x 3 tan x 1 on [0, ) . Solution: 1 3 sin x cos x 0 2 cos x cos x cos x 1 3 sin x cos x cos 2 x 0 cos 2 x sin 2 x cos 2 x 3 sin x cos x cos 2 x 0 cos 2 x sin 2 x 3 sin x cos x 0 cos 2 x sin x(sin x 3 cos x) 0 cos 2 x That is, sin x 0 or sin x 3 cos x 0 and cos x 0 Solving sin x 0 , we find x 0 Solving sin x 3 cos x 0 , we get tan x 3 and cos x 0 7 Which yields x 3 The solution set is therefore {0, }. 3 73.(a) 43 4 2 / 3 4 (32 / 3) 4 7 / 3 3 2 31 / 2 (b) 1 / 2 3( 21 / 21 / 2) 33 3 5 k 5 2 k 1 (c) 5 ( k 2 k 11 k ) 5 ( 4 k 2) 51k 74.(a) (2 4 2 3 / 2 ) 2 (2 42 / 3 ) 2 (210 / 3 ) 2 2 20 / 3 65 / 2 6 2 / 3 3 ) (6 5 / 2 2 / 31 / 3 ) 3 (617 / 6 ) 3 617 / 2 61 / 3 32 k 3 (c) ( 4 k ) 3 (32 k 34k ) 3 (33k 1 ) 3 39 k 3 3 (b) ( 75.(a) x 4 2 1 16 1 (b) x ( ) 3 27 3 1 (c) x 10 2 100 1 76. (a) x ( ) 4 16 2 1 2 1 (b) x ( ) 4 16 3 (c) x 5 125 77. (a) x 5 (b) x 6 (c) x 3 78. (a) x 3 (b) x 4 (c) x 4 1 79. (a) ln( ) (ln 1 ln 3) ln 3 ln 1 3 2 (b) log 4 ( x 4) log 4 ( x 2)( x 2) log 4 ( x 2) log 4 ( x 2) (c) log 2 4 3 x 1 (3x 1) log 2 4 2(3x 1) 6 x 2 8 1 80. (a) ln( ) (ln 1 ln 5) ln 5 ln 1 5 2 x y2 ( x y)( x y) 1 (b) ln ln ln( x y) ln( x y) ln x 2 x x 2 x 1 2x 1 (c) log 3 3 81. (a) Solve e 3 x 1 2 Solution: ln e 3 x 1 ln 2 3x 1 ln 2 1 ln 2 x 3 2 x (b) Solve e 10 Solution: ln e 2 x ln 10 2x ln 10 ln 10 x 2 x 2 1 (c) Solve e 10 Solution: ln e x 1 ln 10 x 2 1 ln 10 x 1 ln 10 2 82. (a) Solve 3 x 81 Solution: 3 x 34 x4 2 x 1 27 (b) Solve 9 Solution: 3 4 x 2 33 4x 2 3 1 x 4 5x (c) Solve 10 1000 Solution: 10 5 x 10 3 5x 3 3 x 5 9 83.(a) Solve ln( x 3) 5 Solution: x 3 e5 x e5 3 (b) Solve ln( x 2) ln( x 2) 1 Solution: ln( x 2)( x 2) 1 x2 4 e x e4 Since x 2 0 and x 2 0 , the solution should be x e 4 (c) Solve log 3 x 2 log 3 2 x 2 Solution: x2 log 3 log 3 9 2x x2 9 2x x 2 18 x 0 x 0 or x 18 Since both of x 2 and x should be more 0, the solution should be x 18 . 84. (a) Solve ln( 2 x 3) 0 Solution: 2x 3 1 x2 (b) Solve log 2 (1 x) 3 Solution: 1 x 8 x 7 (c) Solve ln x 3 2 ln x 1 Solution: x3 Ln 2 ln e x xe 85. (3 2i) (2 5i) (3 2) (2 5)i 5 7i 86. (7 i ) 4 (7 4) i 3 i 87. (4 2i) (9 4i ) (4 9) (4 2)i 13 2i 88. (6 4i ) (2 5i ) (6 2) (5 4)i 8 i 89. 3(5 3i ) 15 9i 90. (2 3i)(5 2i) 10 4i 15i 6 16 11i 91. (6 i)(6 i) 36 i 2 36 1 37 10 92. (4 3i)( 4 2i) 16 8i 12i 6 10 20i 93. z 3 2i 3 2i 94. z u (3 2i ) (4 3i) 1 i 95. z v (3 2i ) (3 5i ) 6 3i 6 3i 96. v w (3 5i ) (1 i ) 2 6i 2 6i 97. vw (3 5i )(1 i ) 3 5 3i 5i 8 2i 98. uz (4 3i )(3 2i ) 12 6 8i 9i 6 17i 99. z z a bi a bi a bi (a bi ) 2a z z (a bi ) a bi (a bi ) (a bi ) 2bi 100. z a bi a bi ( z ) a bi a bi So, (z ) is the same as the value of z . 101. Solving 2 x 2 3x 2 0 (3) (3) 2 4 2 2 3 7 i 2 2 4 4 102. Solving 3x 2 2 x 1 0 Solution: x (2) (2) 2 4 3 1 2 2 2i 1 2 i 23 6 3 3 103. Solving x 2 x 2 0 Solution: x 1 12 4 (1) 2 1 3 2 (1) 2 So, x 2 or x 1 104. Solving 2 x 2 x 3 0 Solution: (2 x 3)( x 1) 0 3 So, x or x 1 2 2 105. Solving 4 x 3x 1 0 Solution: x 3 (3) 2 4 4 1 3 7 Solution: x i 2 4 8 8 106 Solving 2 x 2 4 x 3 0 Solution : x 4 4 2 4(2)( 3) 4 2 2i 2 1 i 2(2) 4 2 11 107 Solving 3 x 2 4 x 7 0 Solution : b 2 4ac (4) 2 4 * 3 * (7) 100 0 So, the solutions are real numbers, that is , x 7/3 or x 1 108 Solving 3 x 2 4 x 7 0 Solution : b 2 4ac (4) 2 4 * 3 * 7 68 0 So, the solutions are complex numbers, that is, x 4 68i 2 17 i 2*3 3 3 109 Solving x 2 2 x 1 0 Solution : b 2 4ac 2 2 4 * (1) * (1) 0 So, the solutions are two equal real numbers, that is x1 x 2 2 1 2 * (1) 110 4 x 2 x 1 0 b 2 4ac (1) 2 4 * 4 *1 15 0 So, the solutions are real complex numbers, that is x (1) 15i 1 15 i 2*4 8 8 111 Solving 3 x 2 5 x 6 0 Solution : b 2 4ac (5) 2 4 * 3 * 6 47 0 So, the solutions are real complex numbers, that is x (5) 47 i 5 47 i 2*3 6 6 112 Solving x 2 7 x 2 0 Solution : b 2 4ac 7 2 4 * (1) * (2) 41 0 So, the solutions are real real numbers, that is x 7 41 7 41 2 * (1) 2 12 113 Suppose z a bi ( z ) (a bi ) a bi a bi z o 114 Suppose z a bi , w c di z w (a bi ) (c di ) (a c ) (b d )i (a c ) (b d )i z w a bi c di (a bi ) (c di ) (a c ) (b d )i So, z w z w 115 Suppose z a bi , w c di zw (a bi )(c di ) (ac bd ) (ad bc )i (ac bd ) (ad bc )i z w a bi * c di (a bi )(c di ) (ac bd ) (ad bc )i So, zw z w P43: Problems of odd number: 1. f ( x ) x 2 , x R The range of f is [0,). Graph: 13 3. f ( x ) x 2 ,1 x 0 The range of f is [0,1) Graph: x 2 1 x 1 x 1 x 2 1 ( x 1)( x 1) x 1, x 1 x 1 x 1 x2 1 (b) f ( x ) , x 1 and g ( x ) x 1, x R are not equal since they have difference x 1 domains and ranges. 5(a) Show that for x 1, 7. f ( x ) 2 x Graph : From the graph, we can see that f ( x ) 2 x is an odd function. Check : f ( x ) 2 * ( x ) 2 x f ( x ) 14 9. f ( x) 3 x Graph: From the graph, we can see that f ( x ) 3 x is an even function. Check : f ( x ) 3( x ) 3 x f ( x ) 11. f ( x) x Graph: From the graph, we can see that f ( x ) x is an even function. Check : f ( x ) x x f ( x ) p 15 15. Suppose that f ( x ) 1 x 2 , x R and g ( x ) 2 x , x 0 (a)( f g )( x ) f [ g ( x )] 1 [ g ( x )] 2 1 (2 x ) 2 1 - 4 x 2 , x 0 (b) ( g f )( x ) g[ f ( x )] 2 f ( x ), f ( x ) 0 f ( x) 1 x 2 } } ( g f )( x ) 2(1 x 2 ) 2 2 x 2 , 1 x 2 0 ( g f )( x ) 2(1 x 2 ) 2 2 x 2 , 1 x 1 P44: Problems of even number: 16. Suppose that 1 , x 1 and g ( x ) 2 x 2 , x R x 1 1 (a) ( f g )( x ) f [ g ( x )] , g( x) 1 g( x) 1 f ( x) } g( x) 2 x 2 ( f g )( x ) 1 , 2x2 1 2x 1 1 2 ( f g )( x ) , x 2 2 2x 1 2 (b) ( g f )( x ) g[ f ( x )] 2[ f ( x )] 2 } 1 ,x 1 x 1 1 2 2 ( g f )( x ) 2( ) 2 ,x 1 x 1 x 2x 1 f ( x) 18. Suppose that f ( x ) x 4 , x 3 and g ( x ) x 1, x 3 Solution : ( f g )( x ) f [ g ( x )] [ g ( x )] 4 , g ( x ) 3 g( x) x 1, x 3 } ( f g )( x) ( x 1) 4 ( x 1) 2 x 2 2 x 1, x 1 3 ( f g )( x) x 2 2 x 1, x 8 16 20. Suppose that f ( x ) x 4 , x 0, Solution : ( f g )( x ) f [ g ( x )] [ g ( x )] 4 , g ( x ) 0 ( g f )( x ) g[ f ( x )] g ( x 4 ) ( f g )( x ) ( g f )( x ) } [ g( x)] 4 g( x 4 ) Let’s assume that g( x) (a bx) n 0 So, [(a bx ) n ] 4 (a bx 4 ) n (a bx ) 4 a bx 4 C 40 a 4 C 41 a 3 (bx ) C 42 a 2 (bx ) 2 C 43 a (bx ) 3 C 44 (bx ) 4 a bx 4 a 4 a , b 4 b, a 3 b 0, ab 3 0, a 2 b 2 0 a 0, b 1 or a 1, b 0 If a 0, b 1, we can get f g [ g ( x )] 4 x 4 n , x n 0 x [0,) if n is odd, and x (, ) if n is even If a 1, b 0, we can get f g [ g( x)] 1 4 Thus, g ( x ) { x n , x [0,) if n is odd 1, x (,) if n is even xR 22.Graph: f ( x) x 3 , x 0 g( x) x 5 , x 0 When x (0,1), f ( x ) g ( x ); when x (1,), f ( x ) g ( x ) 17 24.(a) Gragh : f ( x ) x, x 0 g( x) x 2 , x 0 (b) When x [0,1], f ( x ) g ( x ); when x [1,), f ( x ) g ( x ) 26.(a) 0 x 1 ln x ln 1( 0) mn } m ln x n ln x ln x m ln x n xm xn (b) x 1 ln x 0 mn } m ln x n ln x ln x m ln x n xm xn 30.(a) Let' s assume n 2m , m is integer. f ( x) y x n x 2m f ( x ) ( x ) n ( x ) 2 m x 2 m f ( x ) So, y x n , x R is an even function w hen n is an even integer. 18 (b) Let' s assume n 2m 1, m is integer. f ( x ) y x n x 2 m 1 f ( x ) ( x ) n ( x ) 2 m 1 x 2 m ( x ) x 2 m 1 f ( x ) So, y x n , x R is an odd function w hen n is an odd integer. 30.(a) R( x ) kx (a x ) akx kx 2 kx 2 akx So, it is a polynomial and its degree is 2 (b) Substitute k 2, a 6 into R( x ), we get R( x ) 2 x (6 x ) 2 x 2 12 x ,0 x 6 Graph: When x 3, the reaction rate is maximal. 32. The function is A (10t ) 2 100t 2 Where A is the affected area t is the time measured in days. Substitute t 2, 4, 8 into the function, respective ly, we get A2 400 ( ft ) after 2 days A4 1,600 ( ft ) after 4 days A8 6,400 ( ft ) after 8 days 19 34 2x ( x 2)( x 3) Solution : Domain : { x | x 2 and x 3} f ( x) Range : (-,) 36 1 x 1 Solution : Domain : {x | x R} f ( x) 2 Range : (0,1] P45: problems of odd number 37 Graph: f ( x ) 1 / x, x 0 f ( x) 1 / x 2 , x 1 From the curves, we find that when x 1, the two curves intersected; the function f ( x) 1 / x 2 is greater for small values of x; for large values of x, function f ( x) 1 / x is greater. 20 39 f ( x) 1 , x 1 x 1 (a) Graph: (b) Based on the graph in (a), the range of f(x) is (0,+ ). (c) If f ( x) 2, x 0.5 (d) Based on the graph in (a), only one solution f ( x) a has, where a is in the range of f ( x). 41 f ( x) 3x , x0 1 x (a) Graph: 21 (b) The range of f ( x) is [0,3) (c) iIf f ( x) 2, x 2 (d) Based on the graph in (a), explain in words (?). f ( x) a 3x a 1 x (3 a) x a x 43 a 3a r(N ) 5 N , N 0 1 N (1) 0 .1 0.45 1 0. 1 0 .2 f ( N 0 .2 ) 5 0.83 1 0. 2 The percentage increase is (0.83 0.45) / 0.45 *100% 84% f ( N 0.1) 5 (2) 10 4.55 1 10 20 f ( N 20) 5 4.76 1 20 The percentage increase is (4.76 - 4.55)/4.55 *100% 4.62% Conclusion: the percentage increase when the nutrient concentration is doubled from N=0.1 to N=0.2 is larger than that when the nutrient concentration is doubled from N=10 to N=20. f ( N 10) 5 22 45 f ( x) x2 , x0 4 x2 (a) Graph: (b) Based on the graph in (a), the range of f (x) is [0,1). (c) As x gets larger, f ( x) gets larger, but the increase rate of f ( x) gets smaller. 47 y x 3 / 2 , x 0 Graph: 23 49 y x 1 / 4 , x 0 Graph: 51 (a) Graph: f ( x) x 1 / 2 , x 0 f ( x) x 1 / 2 , x 0 24 (b) 0 x 1 ln x 0 1 1 ln x 0, ln x 0 2 2 1 1 ln x ln x 2 2 1 / 2 ln x ln x 1 / 2 x 1 / 2 x 1 / 2 (c) x 1 ln x 0 1 1 ln x 0, ln x 0 2 2 1 1 ln x ln x 2 2 1/ 2 ln x ln x 1 / 2 x 1 / 2 x 1 / 2 P46: Problems of even numbers 54 Volume fraction (leaf thickness) 0.49 , leaf thickness 0 Graph: Based on the graph, as the leaf thickness increases, the volume fraction of spongy mesophyll deceases. 25 56 V L3 , M 0.35V M 0.35 L3 L( M 1/ 3 ) ,M 0 0.35 58 N (t ) 40 2 t , t 0 (a) N (t 0) 40 * 2 0 40 (b) ln 40et ln 2 ln 40 ln et ln 2 ln 40 ln eln 2 ln 40 ln 2t ln e ln 40 ln 2t ln 40 * 2t ln N (t ) t N (t ) 40e t ln 2 , t 0 , (c) N (t ) 40 * 2 t 1000 2 t 1000 / 40 25 t log 2 25 60 W (t ) W 0 e t , t 0 Solution : (a ) It is the half time of C14 , which is 5730 years. (b) W(t) 5, W0 20 5 20e t e t 0.25 Since we know that ln2 0.00012095 5730years ln 0.25 t 11,462 years 0.00012095 26 62 W (t ) W 0 e t , t 0 Solution W (5) 37% * W 0 W 0 e 5 ln 0.37 0.1989 5 W (Th ) 50% * W 0 W 0 e Th W (5) e (5Th ) 0.74 W (Th ) Th 5 ln 0.74 5 ln 0.74 3(days) 0.1989 64 W (t ) W 0 e t , t 0 Solution : W (t ) e t W (0) 1 t ln 0.35 5730 years 1 t ln 8679 years ln 2 0.35 So, we find that the wood was cut about 8,679 years ago. 0.35 66 W (t ) W 0 e t , t 0 Solution : Let' s assume that the weight of the rock is W . 10 0.00047% * W e 5.335*10 *t W0 W 0 0.00047% * W 0.000079% * W 0.8561 e 5.335*10 10 *t 1 0.8561 291,224,156 years t 5.335 * 10 10 So, we find that the rock is 291,224,156 years old. ln 68 L( x) L (1 e kx ), x 0 (a) Graph for L 20, k 1 : 27 Graph for L 20, k 0.1 (b) For k=1, L( x) 90% L L (1 e x ) 0.9 1 e x e x 0.1 x ln 0.1 L( x) 99% L L (1 e x ) 0.99 1 e x 0.01 e x x ln 0.01 2 ln 0.1 The fish cannot attain length L .The meaning of L : The length of the fish can not grow unlimited. L is the limit of the fish length. 28 (c) The growth curve for k=1 reaches 90% of L faster. When k is varied, the growth rate of the curve becomes different. In particular, if k is increased, the growth curve increases faster to approaches L (for fixed L ). P47: problems for odd numbers 71 (a) Show that f ( x) x 2 1, x 0, is one to one and find its inverse together with its domain. Solution: Suppose x1 x 2 , and x1 0, x 2 0 f ( x1 ) x1 1, f ( x 2 ) x 2 1, and f ( x1 ) f ( x 2 ) 2 2 f ( x ) is one to one function. Inverse function is f ( x ) ( x 1)1 / 2 , x 1 (b) Graph: f ( x ) x 2 1, x 0 f ( x ) ( x 1)1 / 2 , x 1 f ( x ) x, x R 73 (a) Show that f ( x) 1 / x 3 , x 0, is one to one and find its inverse together with its domain. Solution : Suppose x1 x 2 , and x1 0, x 2 0 f ( x1 ) 1 / x1 , f ( x 2 ) 1 / x 2 , and f ( x1 ) f ( x 2 ) 3 3 f ( x ) is one to one function. 1 Inverse function is f 1 ( x) ( )1 / 3 , x 0 x 29 (b) Graph: f ( x) 1 / x 3 , x 0 f ( x) x 1 / 3 , x 0 f ( x ) x, x R 75 Function f ( x) 3 x is one to one function, so inverse function is f 1 ( x) log 3 x, x 0 Graph: f ( x) 3 x , x R f ( x) log 3 x, x 0 f ( x ) x, x R 30 1 77 Function f ( x ) ( ) x is one to one function, so inverse function is 4 f 1 ( x) log 1 / 4 x, x 0 Graph: 1 f ( x) ( ) x , x R 4 f ( x) log 1 / 4 x, x 0 f ( x ) x, x R 79 Inverse function: f 1 ( x) log 2 x, x 1 Graph: f ( x) 2 x , x 0 f ( x) log 2 x, x 1 f ( x ) x, x R 81 (a) 2 5 log2 x x 5 (b) 3 4 log3 x x 4 (c) 55 log1 / 5 x 5 5 log5 x x 5 31 (d) 4 2 log2 x 2 4 log2 x x 4 (e) 2 3 log1 / 2 x 2 3 log2 x x 3 ( f ) 4 log1 / 2 x 2 2 log1 / 2 x 2 log2 x x 83 (a ) ln x 2 ln x 3 ln( x 2 * x 3 ) ln x 5 x4 ln x 6 x 2 ( x 1)( x 1) (c) ln( x 2 1) ln( x 1) ln ln( x 1) x 1 (d ) ln x 1 ln x 3 ln( x 1 * x 3 ) ln x 4 (b) ln x 4 ln x 2 ln 85 (a ) 3 x e x ln 3 (b) 4 x 2 1 e 2 ( x 1)( x 1) ln 2 (c) 2 x 1 e ( x 1) ln 2 (d ) 3 4 x 1 e ( 4 x 1) ln 3 87 Solution: y (1 / 2) x e x ln1 / 2 e x (ln1ln 2) e x ln 2 e x where ln 2 0 89 Solution : Using the substituti on scheme of Jukes and Cankor, K and P are related by 3 4 K ln( 1 p) 4 3 The variable denotes the proportion of observed nucleotide s difference s, which is 47/300 0.1567. We thus find 3 4 47 K ln( 1 * ) 3.2008 4 3 300 90 H ( p1 ln p1 p2 ln p2 p s ln p s ) (a) s 5, p1 p 2 p5 1 / 5 1 1 1 1 1 1 1 1 1 1 H ( ln ln ln ln ln ) 5 5 5 5 5 5 5 5 5 5 1 ln 5 ln5 32 (b) S 10, p1 p 2 p10 1 / 10 1 1 1 1 1 1 1 1 1 1 ln ln ln ln ln 10 10 10 10 10 10 10 10 10 10 1 1 1 1 1 1 1 1 1 1 ln ln ln ln ln ) 10 10 10 10 10 10 10 10 10 10 1 ln 10 ln10 H ( (c) for S 5, H / ln S ln 5 / ln 5 1 for S 10, H / ln S ln 10 / ln 10 1 (d) If S N , and all species are equally abundant then then p1 p 2 p s 1 / N H / ln S 1 1 1 ln ) ln N N N ln N 1 ln N ln N ln N N( 92 y sin x, and y sin( 2 x) Graph: y sin x y sin( 2 x ) 94 y cos x, and y cos( 2 x) Graph: y cos x y cos( 2 x ) 33 96 y tan x, and y tan( 2 x) Graph: y tan x y tan( 2 x ) x 98 f ( x) 2 sin( ), x R 2 The amplitude is 2, and the period is 2 4 . (1 / 2) 3 100 f ( x) sin( x), x R 2 2 The amplitude is 3/2, and the period is 4. ( ) 2 102 f ( x) 7 cos( 2 x), x R The amplitude is 7, and the period is 2 2 . 2 2 3 104 f ( x) cos( x), x R 3 The amplitude is 2/3, and the period is 2 2 2. 3 3 ( ) 34