* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download The number of real values of satisfying the equation is (a) Zero (b
Survey
Document related concepts
Transcript
1. The number of real values of a satisfying the equation a 2 2a sin x 1 0 is (a) Zero (b) One (c) Two (d) Infinite 2. For positive integers n1 , n 2 the value of the expression (1 i)n1 (1 i 3 )n1 (1 i 5 )n2 (1 i7 )n2 where i 1 is a real number if and only if 3. 4. (a) n1 n 2 1 (b) n1 n 2 1 (c) n1 n 2 (d) n1 0, n 2 0 Given that the equation z 2 ( p iq)z r i s 0, where p, q, r, s are real and non-zero has a real root, then (a) pqr r 2 p 2 s (b) prs q 2 r 2 p (c) qrs p 2 s 2q (d) pqs s 2 q 2r If x 5 2 4 , then the value of the expression x 4 9 x 3 35 x 2 x 4 is (b) 160 (d) 60 (a) 160 (c) 60 5. If (a) b d 3 i (a ib)(c id ) , then tan 1 tan 1 has the value c a 3 2n , n I (c) n 6. 3 ,n I 3 ,n I b c a 1, then cos( ) cos( ) cos( ) is equal to c a b (a) 3/2 (b) – 3/2 (c) 0 (d) 1 If (1 i)(1 2i)(1 3i).....( 1 ni) a ib , then a2 b 2 (c) 9. 6 If a cos i sin , b cos i sin , (a) a 2 b 2 8. (d) 2n ,n I c cos i sin and 7. (b) n 2.5.10.... (1 n 2 ) is equal to (b) a 2 b 2 (d) a2 b 2 If z is a complex number, then the minimum value of | z | | z 1| is (a) 1 (b) 0 (c) 1/2 (d) None of these For any two complex numbers z1 and z 2 and any real numbers a and b; | (az1 bz 2 )| 2 | (bz 1 az 2 )| 2 (a) (a 2 b 2 )(| z1 | | z 2 |) (b) (a 2 b 2 )(| z1 | 2 | z 2 | 2 ) (c) (a 2 b 2 )(| z1 | 2 | z 2 | 2 ) (d) None of these 10. 11. The locus of z satisfying the inequality log 1 / 3 | z 1| log1 / 3 | z 1| is (a) R (z) 0 (b) R (z) 0 (c) I (z) 0 (d) None of these If z1 a ib and z 2 c id are complex numbers such that | z1 | | z 2 | 1 and R(z1 z 2 ) 0, then the pair of complex numbers w1 a ic and w2 b id satisfies 12. (a) | w1 | 1 (b) | w2 | 1 (c) R(w1 w2 ) 0, (d) All the above Let z and w be two complex numbers such that | z | 1, | w | 1 and | z iw | | z iw | 2 . Then z is equal to (a) 1 or i (c) 1 or – 1 13. (b) i or i (d) i or –1 The maximum distance from the origin of coordinates to the point z satisfying the equation z (a) 1 ( a 2 1 a) 2 1 a is z 1 ( a 2 2 a) 2 1 ( a 2 4 a) (c) 2 (d) None of these (b) 14. Find the complex number z satisfying the equations (b) 6 8i (d) None of these (a) 6 (c) 6 8 i, 6 17 i 15. If z 1 , z 2 , z 3 are complex numbers such that | z1 | | z 2 | | z 3 | (a) Equal to 1 (c) Greater than 3 16. 1 1 1 1 , then | z 1 z 2 z 3 | is z1 z 2 z 3 (b) Less than 1 (d) Equal to 3 z z1 , then the value of | z 7 9i| is If z1 10 6i, z 2 4 6i and z is a complex number such that amp z z2 4 equal to (a) 17. z 12 5 z4 , 1 z 8i 3 z 8 (b) 2 2 2 (c) 3 2 (d) 2 3 If z 1 , z 2 , z 3 be three non-zero complex number, such that z 2 z 1 , a | z 1 |, b | z 2 | and c | z 3 | suppose that a b c z b c a 0 , then arg 3 z2 c a b z z1 (a) arg 2 z 3 z1 2 is equal to z z1 (b) arg 2 z 3 z1 2 18. z z1 z z1 (c) arg 3 (d) arg 3 z z 1 z 2 z1 2 Let z and w be the two non-zero complex numbers such that | z | | w | and arg z arg w . Then z is equal to (a) w 19. (b) w (c) w (d) w If | z 25 i | 15 , then | max .amp (z) min .amp (z)| 3 (a) cos 1 5 (c) 20. 21. 2 3 cos 1 5 z arg 2 z 3 Let z, w be complex numbers such that z iw 0 and arg zw . Then arg z equals (b) / 2 (d) / 4 If (1 x )n C 0 C 1 x C 2 x 2 ..... C n x n , then the value of C0 C2 C4 C6 ..... is (c) 2 n sin n 2 n n/2 (d) 2 cos 4 (b) 2 n cos (a) 2 n 23. 3 3 (d) sin 1 cos 1 5 5 z If z 1 , z 2 and z 3 , z 4 are two pairs of conjugate complex numbers, then arg 1 z4 (a) 0 (b) 2 3 (c) (d) 2 (a) 5 / 4 (c) 3 / 4 22. 3 (b) 2 cos 1 5 n 2 If x cos i sin and y cos i sin , then x m y n x m y n is equal to (a) cos(m n ) equals (b) cos(m n ) (c) 2 cos(m n ) (d) 2 cos(m n ) 8 sin 2r 2r i cos is 9 9 24. The value of 25. (a) 1 (b) 1 (c) i (d) i If a, b, c and u, v, w are complex numbers representing the vertices of two triangles such that c (1 r)a rb r 1 and w (1 r)u rv , where r is a complex number, then the two triangles (a) Have the same area (b) Are similar (c) Are congruent (d) None of these 26. Suppose z1 , z 2 , z 3 are the vertices of an equilateral triangle inscribed in the circle | z | 2 . If z1 1 i 3 , then values of z 3 and z 2 are respectively 27. 28. (a) 2, 1 i 3 (b) 2, 1 i 3 (c) 1 i 3 ,2 (d) None of these [IIT 1994] If the complex number z1 , z 2 the origin form an equilateral triangle then z12 z 22 (a) z1 z 2 (b) z1 z 2 (c) z 2 z1 (d) | z1 | 2 | z 2 | 2 If at least one value of the complex number z x iy satisfy the condition | z 2 | a 2 3a 2 and the inequality | z i 2 | a 2 , then 29. (a) a 2 (b) a 2 (c) a 2 (d) None of these If z, iz and z iz are the vertices of a triangle whose area is 2 units, then the value of | z | is (a) – 2 (c) 4 (b) 2 (d) 8 30. If z 2 z | z | | z | 2 0 , then the locus of z is 31. (a) A circle (b) A straight line (c) A pair of straight lines (d) None of these If cos cos cos sin sin sin 0 then cos 3 cos 3 cos 3 equals to 32. 33. (a) 0 (b) cos( ) (c) 3 cos( ) (d) 3 sin( ) If z r cos r n2 i sin r n2 , where r = 1, 2, 3,….,n, then lim z 1 z 2 z 3 ... z n is equal to n (a) cos i sin (b) cos(/2) i sin(/2) (c) e i / 2 (d) 3 e i If the cube roots of unity be 1, , 2 , then the roots of the equation (x 1)3 8 0 are (a) 1, 1 2 , 1 2 2 (b) 1, 1 2 , 1 2 2 (c) 1, 1, 1 (d) None of these 34. 35. If 1, , 2 , 3 ......., n 1 are the n, n th roots of unity, then (1 )(1 2 ).....( 1 n 1 ) equals (a) 0 (b) 1 (c) n (d) n 2 The value of the expression 1.(2 )(2 2 ) 2.(3 )(3 2 ) ....... .... (n 1).(n )(n 2 ), where is an imaginary cube root of unity, is 36. 37. (a) 1 (n 1)n(n 2 3 n 4 ) 2 (b) 1 (n 1)n(n 2 3 n 4 ) 4 (c) 1 (n 1)n(n 2 3 n 4 ) 2 (d) 1 (n 1)n(n 2 3 n 4 ) 4 1 i 3 If i 1 , then 4 5 2 2 334 1 i 3 3 2 2 (a) 1 i 3 (b) 1 i 3 (c) i 3 (d) i 3 365 is equal to If a cos(2 / 7) i sin(2 / 7), then the quadratic equation whose roots are a a 2 a 4 and a 3 a 5 a 6 is (a) x 2 x 2 0 (b) x 2 x 2 0 38. (c) x 2 x 2 0 (d) x 2 x 2 0 th Let z 1 and z 2 be n roots of unity which are ends of a line segment that subtend a right angle at the origin. 39. Then n must be of the form (a) 4k + 1 (b) 4k + 2 (c) 4k + 3 (d) 4k Let is an imaginary cube roots of unity then the value of 2( 1)( 2 1) 3(2 1)(2 2 1) ..... (n 1)(n 1)(n 2 1) is 2 n(n 1) (a) n 2 n(n 1) (b) 2 2 2 n(n 1) (c) n 2 40. (d) None of these is an imaginary cube root of unity. If (1 2 )m (1 4 )m , then least positive integral value of m is (a) 6 (c) 4 (b) 5 (d) 3