Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Compound Angle Identities Tutorial Sin ( A + B ) = SinA CosB + CosA SinB Sin ( A – B ) = SinA CosB – CosA SinB Cos ( A + B) = CosA CosB – SinA SinB Cos ( A – B ) = CosA CosB + SinA SinB Tan ( A + B ) = TanA – TanB 1 - TanA TanB Tan ( A – B ) = TanA – TanB 1 + TanA TanB These are the identities that you can use along with other identities to help solve problems. Here are a few Web sites that will also help to explain this topic… http://www.projectalevel.co.uk/maths/compound .htm www.pinkmonkey.com/studyguides/trig/chap4/to 404301.htm http://www.acts.tinet.ie/compoundanglesandcalcu _668.html The Unit Circle, which is a very useful tool when figuring out Compound Angle Identities looks like this: Examples: Sin(2A) = 2SinA CosA Look at the formulas and change Sin (2A) to Sin (A + A) Keep the Right side the same Sin( A + A )= 2SinA CosA Now you enter the formula for Sin (A + A) which is the same as Sin (A + B) SinA CosA + CosA SinA = 2SinA CosA Then combine 2SinA CosA = 2SinA CosA Example 2: Cos (2A) = Cos2A – Sin2A Again you change Cos (2A) to Cos (A+A) so that it is more easily recognizable in order to finds the formula Cos (A+A) = Cos2A – Sin2A Plug in formula now CosA CosA – SinA SinA = Cos2A – Sin2A Combine Cos2A – Sin2A= Cos2A – Sin2A Example 3: Tan (2A) = 2 Tan A 1-Tan2A Tan ( A + A ) = 2 Tan A 1-Tan2A TanA + Tan A = 2 Tan A 1- TanA TanA 1-Tan2A 2 Tan A = 2 Tan A 1-Tan2A 1-Tan2A Now these are all questions that require the use of the Unit Circle for determining values of original numbers. In order to determine the proper numbers to use to figure out the problems you must look at the angle that you are trying to figure out and then look at what other angles can add or subtract to give you that angle… ex. Sin 75 would require the use of angles 45 and 30 because they add up to 75. Therefore the formula that would be used in this case would be (Sin (A + B)) which then ’provides’ the other formula that solves the equation. For Example to figure out Sin 75; ( example 1 (sine)): Sin (75) Sin ( 30 + 45 ) Now use the formula previously given Sin30 Cos45 + Cos30 Sin45 The next step is to use the unit circle to help. You will notice that Sin30 has another value, that is ½ and Sin45 also has another value, that is 2/2 . Cos 30 is 3/2 and Cos 45 is also 2/2 . You then substitute the Sin and Cos values for their ‘square root’ values that we just listed from the Unit Circle. Doing so then allows for further expanding and solving of the problem… ½ 2/2 + 3/3 2/2 Combine the equations 2/4 + 6/4 2 + 6 4 Example 2 ( Cosine ): Cos ( 15 ) What equals 15 degrees… look at the unit circle…( 45 – 30 ) Cos ( 45 – 30 ) Plug in the formula using the given ( 45 and 30 ) degrees numbers. Cos45 Cos30 + Sin45 Sin30 2/2 3/2 + 2/2 1/2 Then combine the terms… 6/4 + 2/4 Make sure that the denominators are the same… 6 + 2 4 Example 3 ( Tangent ): Tan ( -15 ) Look at unit circle just as before and figure out which angles add up to give you the –15 Tan ( 30 – 45 ) = Tan30 - Tan45 1 + Tan30 Tan45 = 3 – 1 1 + 3 + 1 = (3 – 1 ) ( 1 - 3) (1 + 3) (1 - 3) * get rid of the root of the denominator ( by multiplying )* = 23 – 4 -2 = -3 +2 Now You Can Test Your Skills: Compound Angle Identities Test: (answers found in appendix)… 1. 2. 3. 4. Sin(165) Cos(80) Sin(20) + Cos(20) Sin(80) Sin(37) Cos(7) - Cos(7) Sin(37) Sin(A + B) = TanA + TanB CosA CosB 5. Cos (45 – θ) = Sin (30 – θ) 6. Tan (A – θ)= 2/3 7. Cos2(26) – Sin2(26) 8. 2Cos2(34) – 1 9. 2Sin(14) Cos(14) 10. 1 – 2Sin24θ 11. Sinθ Cosθ = ½ Sin (2θ) 12. (SinA + CosA)(SinB + CosB)=Sin(A+B) + Cos(A-B) 13. Sin ( A + B ) = TanA + TanB CosA CosB 14. 1 – Cos (2B) + Sin2B = TanB 1 + Cos (2B) + Sin2B 15. 1 + TanX 1 - TanX Appendix Test Answers 1. Sin(165) Sin(135+ 30) Sin135 cos30 +cos135 sin30 √2/2 √3/2 -√2/2 ½ √6/4 + -√2/4 √6-√2 4 2. cos80 cos20 + sin80 sin20 cos(80-20) cos60 ½ 3. sin37 cos7 – cos37 sin7 sin(37-7) sin(30) ½ 4. Sin(A + B) = TanA + TanB CosA CosB SinA CosB + CosA SinB = TanA + TanB CosA CosB SinA CosB + CosA SinB = TanA + TanB CosACosB CosACosB TanA + TanB = TanA TanB 5. Cos( 45 – θ) = Sin ( 30 – 0 ) Cos45 Cosθ + Sin45 Sinθ = Sin30 Cosθ + Cos30 Sinθ √2/2 Cosθ + √2/2 Sinθ = ½ Cosθ + √3/2 Sin θ √2/2 Cosθ – 1/2Cosθ = √3/2Sinθ - √2/2 Sinθ √2 - 1 Cosθ = √3 - √2 Sin θ 2 Cosθ 2 Cosθ 2 √3- √2 √2 – 1 = √3 - √2 Tanθ 2 2 = √3 - √2 2 √2 – 1 = Tan θ √3 - √2 6. Tan ( A – θ ) = 2/3 Tan (3 – θ) = 2/3 TanA – Tanθ = 2/3 1+TanA Tanθ 3 – Tanθ = 2/3 1+3Tanθ 9 -3 Tan θ = 2 + 6 Tan θ -9tan θ = 7 Tan θ = -7/9 Tan θ = 0.7778 . θ = 37.9 7. Cos2 26 – sin2 26 Cos (26) cos (26) – Sin (26) sin (26) Cos 52° 8. 2Cos2 (34)- 1 Cos 2 34 + Cos 2 34 - 1 Cos 2 34 – Sin 2 34 Cos 68° 9. 2Sin 14° Cos 14° Sin 14 Cos 14 + Cos 14 Sin 14 Sin 28 10. 1-2 Sin2 4 θ Cos (A+B) Cos A Cos B – Sin A Sin B 11. Sin θ Cos θ = ½ Sin (2 θ) Sin (2 θ)= 2 Sin θ Cos θ 12.(Sin A + Cos A) (Sin B + Cos B)= Sin (A+B) + Cos (A-B) Sin A Sin B + Sin A Cos B + Cos A Cos B + Cos A Sin B Cos A Cos B + Sin A Sin B + Sin A Cos B + Cos A Sin B Cos (A+B) Sin (A+B) Sin (A+B) + Cos (A-B) = RHS 13. Sin (A+B) = tan A + tan B Cos A Cos B Sin A Cos B +Cos A Sin B = RHS Cos A Cos B Sin A Cos B + Cos A Sin B Cos A Cos B Cos A Cos B Tan A + Tan B = RHS 14. 1-Cos (2B)+Sin 2B = tan B 1+ Cos (2B)+Sin 2 B 1- (Cos2 B – Sin 2 B) + 2 Sin B Cos B 1+(Cos2 B – Sin 2 B) + 2 Sin B Cos B 1-(1-2sin2B)+2SinB CosB 1+(2Cos 2 B –1) + 2SinB CosB 2 Sin2B + 2SinB CosB 2 Cos2B + 2SinB CosB 2SinB ( SinB+CosB) 2CosB ( CosB + CosB) SinB = TanB CosB 15. 1+TanX 1- TanX Tan ( 45 + X ) = Tan45 + TanX 1 - (Tan45)(TanX) Bibliography: Pre - Calculas Mathematics Two Pages 98 to 102 Websites: http://www.projectalevel.co.uk/maths/compound .htm www.pinkmonkey.com/studyguides/trig/chap4/to 404301.htm http://www.acts.tinet.ie/compoundanglesandcalcu _668.html (Our own notes) Mr. Paul Betuik