Download Presentation

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Integrated CMOS 18V 240μA
Charge Pump with Passive
Level Shifters
Vratislav MICHAL, Denis COTTIN, Nicolas MARTY and Patrik ARNO
STMicroelectronics, 12 rue Jules Horowitz, Grenoble, France
[email protected]
Motivation – High power density
 Structures with low voltage vs. high voltage capacitors
VIN
VIN
VIN
4VIN
VIN
VIN
VIN
-VIN
D1
VIN
CMID
D1
VIN
VIN
VIN
①
⓫
D2
D2
D1
D1
VIN
②
CMID
wikipedia
D2
D2
4VIN
VIN
Dickson charge pump with linear MOSFET in parallel with diodewired MOSFET. 4-stage (x5 multiplier)
⓬
 Small area
 Complicated switches driving
X
 well-known active switches structures
 low-denisty capacitors
2
Preferred architecture: dual phase voltage multiplier




Output power is delivered by one of complementary inputs VIN
Only small output capacitor (high-voltage)
Small CMID filters the voltage spikes in the active structure
First node delivered by the DC input voltage
VIN
VIN
D1
VIN
VIN
-VIN
CMID
VIN
D1
VIN
①
D2
D2
D1
2VIN
D1
②
CMID
D2
D2
3VIN
VIN
COUT
VIN
⓫
VIN
⓬
3
Active level shifter solution
 Very high output voltage reached in ref [*]
 Active switches driving rely on the floating active level shifters
 High-voltage floating level shifters are difficult to design
[*] A. Emiraet al. “All-pMOS 50-V charge pump using low voltage capacitors,” IEEE Tran. on ind.
Electronics, Vol. 60, No. 10, 2013
4
Single cell - Diodes replacement by the active
switches
 Complementary gate
signals generated by the
structure
 Steady-state reached by
the transistor diodes
Pelliconi cell
5
Final structure: Passive level shifter

Passive level shifters helps the fast propagation of the driving signals
 Act as HP bypass for driving signal and LP link for DC voltage
Fast driving signals prevent energy loss in the charge-pump structure
FEEDFORWARD capacitor considerably increase the output power


CAUX(1)
CAUX(2)
①
CAUX(2)
②
④
CAUX(3)
③
Fast edges
~5pF
INΦA_AUX
~5pF
R
~5pF
VIN
C1
INΦA
~15kΩ
~30pF
C2
~182pF
~15kΩ
CFEEDFORWARD
è AC FEEDFORWARD è
2·VDD_INT
~5pF
~15kΩ
~15kΩ
C1 ‒ C3:
5V MIM capacitor
C3
~101pF
~34pF
CFEEDFORWARD:
20V MOM capacitor
0
sub. diode
⓫
⓭
⓬
⓮
sub. diode
M1
CLK: 10MHz
2·VDD_INT = VIN
M2
M3
M4
5·VIN
QIN
VOUT 18V
QIN
2·VDD_INT
VIN
INΦB
~5pF
~5pF
②
①
③
~101pF
~182pF
0
~10pF
④
DC nodes:
M1 : VIN
M2 : 2·VIN
M3 : 3·VIN
M4 : 4·VIN
~34pF
è AC FEEDFORWARD è
R
~5pF
~5pF
~15kΩ
~30pF
~15kΩ
~15kΩ
~15kΩ
INΦB_AUX
Note: M1 can be
external DC voltage
Fast edges
~5pF
⓫
~5pF
⓬
~5pF
⓭
~5pF
⓮
6
Final structure: simulation
ΦA, IOUT = 240µA
VOUT 18V
Internal nodes of Fig. 4 charge
pump (upper phase). Lower phase
is identical with 180° phase shift.
The solid lines correspond to the
floating nodes ① to ④ , whereas
the dashed lines to the DC middle
nodes M1-4.
④
②
①
M4
M3
M2
M1
ΦA, IOUT = 240µA
INΦA
Simulation of the internal nodes of the
charge pump (upper phase) without
passive level shifter (R = 0).
zones of cross-conduction
VOUT 18V
crossconduction
④
time (s)
③
voltage (V)
voltage (V)
③
M4
M3
②
M2
①
M1
INΦA
time (s)
7
Capacitor Area Optimization




Capacitor are dominant silicon area
contributor.
Capacitor distribution is not uniform across CP
stages.
Approximate analytical solution known in the
literature.
It is impossible to cover all parasitic elements
in the analytical capacitor area distribution.
[*] A. Emiraet al. “All-pMOS 50-V charge pump using low voltage capacitors,” IEEE
Tran. on ind. Electronics, Vol. 60, No. 10, 2013
8
Capacitor Area Optimization (cont’d)
 Optimization target: higher output current for given capacitor area CTOT
 Set of equation can be written:
CTANK   C1
C1   C2
C2   C3
CTOT  CTANK  C1  C2  C3
 Leading to the capacitor parameters:
CTANK 
C2 
 CTOT
 CTOT
, C1 
1   1     
1   1     
 CTOT
CTOT
, C3 
1   1     
1   1     
 These equations can be inserted in the capacitor value property
9
Capacitor Area Optimization results
 Optimization is parametric simulation, accounting for all dominant
parameters of the charge pump:
 Target: higher output voltage for given output current:
α = 1.7, β = 1.5 and γ = 2.
The CP was connected in
the
open-loop
with
G_CTRL = 1V. Simulation
done in the worst-case
corner (CMIN, slow, 120°C
with load current 260μA)
10
18V Output voltage control
 Output voltage control is provided via charge control of the main
(input) tank capacitor.
 Tank capacitor is used in the input voltage doubler.
Fast (low
power) driver power driver
+VDD_INT
+VDD_INT
A
Q8
CMD_PMOS
CLK
A
Q7
OUT_AUX
B
tnovl
Q6
(~1ns)
2·VDD_INT
OUT
B
CTANK
HV MOS
0
(1)
GND
VDD
Q4
CONTROL IN
(~ 1V)
Charging control
G_CTRL
Q5
VC(1)
IC_CHARGING
QCONTROLL
Q
TCLK
2
+VDD
G_CONTROLL
GND
2
W

 0COX VG _ CTRL  VT  
L


11
Conclusion - Results
S
N
STI
P-well
N-well
gate
D
N
Bulk (iso)
iso
P
N
STI
Isolated P-well
STI
sub
STI
N-well
N ISO
Psubstrate
P
STI
Phase 1
UV photography
160nm CMOS
P-well
Epi P
Phase 2
Epitaxial isolation trench 1.5µm
High-voltage isolated NMOS with >20V breakdown voltage
VDD_INT
CLK
CP_Φ(A)
G_CTRL
OUT_18V
VREF
1.1V
G_CTRL
soft-start
CP_Φ(B)
CLK
VDD_INT
Feedback control loop
10pF/HV
VBAT
2.42 – 4.8V
VDD_INT
2.4V
VOUT
18V
Imax
280μA
Fsw
10MHz
COUT
10pF
Iq
4.2 mA
POUT/A
12.4 mW/mm2
Obtained features
12
Related documents