Download Integrals Involving Trigonometric Substitution

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Integrals Involving Trigonometric Substitution
I. Integrals of the Form
a2  x2
a 2  x 2 where a is a positive
constant. If you make the substitution x  a sin  , where       , then
2
2
Suppose that you have an integral of the form
a 2  x 2  a 2  a 2 sin 2   a 2 (1  sin 2  )  a 2 cos 2   a cos  because
cos   0 since   2     2 . Also, dx  a cos  d . Also, x  a sin  
x
 x
sin      arcsin   .
a
a
x
a
s
sin    y  s and r = a 

a
a2  x2
a2  s2
.
a
x 2  s 2  a 2  x  a 2  s 2  cos  
Example: Find

4  x 2 dx .
Let x  2 sin  where       . Then
2
2
2 cos d .

4  x 2  2 cos and dx 


4  x 2 dx  (2 cos )(2 cos d )  4 cos 2 d 
1
1

4   sin  cos   C  2  2 sin  cos  C =
2
2

x
2
 x   x  4  x
2 arcsin    2 
2
 2   2 

C =



2
 x x 4 x
2 arcsin   
+ C.
2
2
Let’s check this answer.
2
4  x2
2
d 

 x x 4 x
2
arcsin




dx 
2
2

1







1
2
 1 x
2

 
2

1 1 
   2x
    x
2
2 2 
 2 4 x



2
 x2
  4  x2 






4  x2 2 4  x2


4  x 2 4  x 2  4  x 2 2(4  x 2 )


 4  x 2 and so it checks.
2
2
2
2 4 x
2 4 x
a2  x2
II. Integrals of the Form
a 2  x 2 where a is a positive
constant. If you make the substitution x  a tan  , where       , then
2
2
Suppose that you have an integral of the form
a 2  x 2  a 2  a 2 tan 2   a 2 (1  tan 2  )  a 2 sec 2   a sec  because
sec  0 since   2     2 . Also, dx  a sec 2  d . Also, x  a tan  
x
 x
tan      arctan   .
a
a
a2  x2
x
tan  
s
 y  s and x = a 
a

a
a s r r  a s .
2
2
2
Example: Find
2

2
x 2  4 dx .
Let x  2 tan  where       . Then
2
2
2 sec 2  d .

x 2  4  2 sec and dx =


x 2  4 dx  (2 sec )(2 sec 2 d )  4 sec 3 d 
1
1

4 sec  tan   ln sec   tan    C  2 sec  tan   2 ln sec   tan   C =
2
2

 x 2  4  x 
   2 ln
2

 2 
2


x x2  4
 2 ln
2
x2  4 x
 C 
2
2
x2  4
x

x2  4  x  C .
2
2

x2  4  x  


 2x

1  2x  1 2
1
x2
x

x  4  2
 1 




2
2
2  x2  4  2
x2  4
 x  4  x  2 x  4 

 x  x2  4  x2  x2  4  4
x2  4
1
2x 2  8
 2






2
2
x 2  4 
2 x2  4
2 x2  4
 x  4  x  
x2  4
 x 2  4 and so it checks.
2
x 4
Let’s check this answer.
d 1
2
 x x  4  2 ln
dx  2

III. Integrals of the Form

x2  a2
x 2  a 2 where a is a positive
constant. If you make the substitution x  a sec , where 0     or     3 ,
2
2
Suppose that you have an integral of the form
then
x 2  a 2  a 2 sec 2   a 2  a 2 (sec 2   1)  a 2 tan 2   a tan  because
tan   0 for 0     2 or     3 2 . Also, dx  a sec tan  d . Also,
x
 x
x  a sec   sec      arc sec  .
a
a
s
Consider sec   where 0      s  0 
2
a
x = a and r = s  a 2  y 2  s 2  y  s 2  a 2 .
s
Consider sec   where     3  s  0 
2
a
x2  a2

x  a and r  s  a 2  y 2  s 2  y   s 2  a 2 .
Example: Find

a
x2  4
dx .
x
Let x  2 sec where 0     or     3 . Then
2
2
dx  2 sec tan  d . Thus,

x


x2  4
dx 
x

x 2  4  2 tan  and
2 tan  2 sec tan  d  
2 sec 
2 tan 2  d  2 (sec 2   1) d  2 tan   2  C 
 x2  4 
  2arc sec x   C =
2

2 
2

x2  4
x

3
2
 x
x 2  4  2arc sec   C . This answer does check.
2
a 2  u 2 , a 2  u 2 , and
IV. Integrals of the Form
u2  a2
A. Sometimes, you should make a u–substitution before you make a trigonometric
substitution.
Example: Find

9  4x 2
dx .
x2
Let u 2  4 x 2  u  2 x  du  2dx . Also, a 2  9  a  3 .

9  4x 2
dx = 2
x2
where  
2

 
9  4x 2
 2 dx  2
4x 2
2
.

9  u2
du . Let u  3sin 
u2
9  u 2  3 cos and du  3 cos d 
3 cos (3 cos d )
 2 cot 2  d 
(3 sin  ) 2



2 (csc   1) d  2 cot   2  C 

2
9  u2
du  2
u2
2
 9  u2 
  2 arcsin  u   C 
 2
 u

3


 9  4x 2 
  2 arcsin  2 x   C =
 2
 2x 
 3 


 9  4x 2
 2x 
 2 arcsin    C .
x
 3 
u
3

9  u2
B. Sometimes, you have to complete the square before making a u–substitution or a
trigonometric substitution.
Example 1: Find

1
dx .
4 x  8 x  13
2
Complete the square for 4 x 2  8 x  13 :
4 x 2  8x  13  4( x 2  2 x )  13
= 4( x 2  2 x  1)  13  4
= 4( x  1) 2  9
4
Let u 2  4( x  1) 2  u  2( x  1)  du  2dx . Also, a 2  9  a  3 .
1
1
1
1
dx 
dx 
du 
Thus,
2
2
2
2 u 9
4 x  8 x  13
4( x  1)  9



1 1
1
 u 
 2( x  1) 
C .
 arctan    C  arctan 
2 3
6
 3 
 3 
Example 2: Find

15  6 x  9 x 2 dx .
Complete the square for 15  6 x  9 x 2 :
15  6 x  9 x 2  9 x 2  6 x  15
2


 9 x 2  x   15
3


2
1

 9 x 2  x    15  1
3
9

2
 16  (9 x  6 x  1)  16  (3x  1) 2
Let u 2  (3x  1) 2  u  3x  1  du  3dx . Also, a 2  16  a  4 .
1
Thus,
15  6 x  9 x 2 dx 
16  (3x  1) 2 3dx 
3
1
16  u 2 du . Let u  4 sin  where       . Then,
2
2
3
1
16  u 2 du =
16  u 2  4 cos and du  4 cos  d .
3
1
16
8
8
(4 cos )(4 cos d ) 
cos 2 d    sin  cos  C 
3
3
3
3





2
8
 u  8  u  16  u
arcsin     
3
4
 4  3  4 


C 


2
8
 3x  1  (3x  1) 15  6 x  9 x
arcsin 

C .

3
6
 4 
u
4

16  u 2
5
Practice Sheet for Trigonometric Substitution
(1)

(2)

(3)

(4)
x2
25  4 x 2
dx =
x2
dx =
x 2  2 x  10
1
x

2
dx =
2
4x  9
1
2
x  2x  5
dx =
3
(5)

1
15  2 x  x
1
dx =
2
3
(6)

9  x 2 dx =
3
(7)
x
(8)

(9)

(10)

1
3
x 4
2
dx 
x 2  1 dx 
e x 1  e 2 x dx 
x
7  6x  x
2
dx 
6
(11)

u2  a2
du 
u2
(12)

9 x 2  25
(13)

x2 1
dx 
x
(14)

(15)

(16)
 1  x 
x2
x3
1 x2
1
x 1
2
dx 
dx 
dx 
1
2 2
dx 
Solution Key for Trigonometric Substitution
(1) First, let u 2  4 x 2  u  2 x  du  2 dx 
1
8

4x 2
25  4 x 2
2dx 
1
8

u2
25  u 2

x2
25  4 x
2
dx =
du . Next, make the trigonometric substitution
5
u  5 sin   du  5 cos  d and
25  u  5 cos 
2
u

25  u 2
7
Thus,
1
8
result


u2
25  u 2
du 
1
8

25 sin 2 
5 cos  d   25 sin 2  d . Using the
5 cos 
8

1
1
sin 2 d    sin  cos  , we get
2
2

x2
25  4 x 2
2
25
25
 u  25  u  25  u
sin  cos   C 
arcsin     
16
16
5
 5  16  5 
25  2 x  25  4 x 2
 
16  5 
5
(2) By long division,
Thus,

dx 
25

16

  C  25 arcsin  2 x  

16
 5 


  C  25 arcsin  2 x   1 x 25  4 x 2  C .

16
 5  8

x2
2 x  10
2x  2
8
.
 1 2
 1 2
 2
2
x  2 x  10
x  2 x  10
x  2 x  10 x  2 x  10

x2
dx  1 dx 
x 2  2 x  10


2x  2
1
dx  8
dx 
x  2 x  10
( x  1) 2  9
2
8
 x 1
x  ln x 2  2 x  10  arctan 
C.
3
 2 
(3) First, let u 2  4 x 2  u  2 x  du  2 dx 
2
 4x
1
2
4x  9
2
2 dx  2
u
1
2
u2  9

1
x
2
4x  9
dx =
du . Next, make the trigonometric
substitution u  3 sec   du  3 sec x tan x dx and
u2  9
2
u

3
8
u 2  9  3 tan  
Thus, 2
u
1
u2  9
2
du  2

1
3 sec  tan  d   2
9
9 sec  (3 tan  )
2
2
2  u 2  9 
2  4 x 2  9 
sin   C  
C  
C 



9
9  u
9
2
x



 cos d 
4x 2  9
C .
9x
(4) First complete the square to get x 2  2 x  5  ( x  1) 2  4 . Next, let u  x  1 
du  dx 

1
x 2  2x  5
dx =

1
u2  4
du . Make the trigonometric
substitution u  2 tan   du  2 sec 2  d and
u 2  4  2 sec  
u2  4
u

2

ln
1
u 4
2
du =




1
2 sec 2  d  sec  d  ln sec   tan   C =
2 sec 
u2  4 u
  C  ln
2
2
u 2  4  u  C  ln
x 2  2 x  5  ( x  1)  C .
(5) First, complete the square: 15  2 x  x 2   x 2  2 x  15  ( x 2  2 x  1)  16 
16  ( x  1) 2 . Next, let u  x  1  du  dx 

1
16  u 2

1
15  2 x  x 2
dx 
du . Make the trigonometric substitution u  4 sin   du  4 cos  d
9
and 16  u 2  4 cos 
4
u

16  u 2
Thus,

1
16  u
2
 4 cos 4 cos d   1d    C  arcsin  4   C 
 x 1
arcsin 
C 
 4 
3

 x 1
1
dx  arcsin 
  arcsin   
2
2
 4 1
15  2 x  x

6
3
1
1
arcsin 0 
u
1
du =
. [Note: You would not need to make the trigonometric substitution
if you recognized that

u
du = arcsin    C .]
4
16  u 2
1
(6) Make the trigonometric substitution x  3 sin   dx  3 cos  d and
3 cos 
3
x

9  x2
Thus,
9
2


9  x 2 dx 


(3 cos  )(3 cos  d )  9 cos 2 d 
1  cos 2  d  9   9 sin 2  C  9   9 sin  cos  C 
2
4
2
9
 x  9  x  9  x
arcsin     
2
3
 3  2  3 
2
2
2

  C  9 arcsin  x   x 9  x  C 

2
2
3

10
9  x2 
3

9 x
3
2

9
 x x 9 x
dx =  arcsin   
2
3

2
2
3
3
9    9    9
. [Note:
     
2 2  2 2  2
of radius 3,

9
9

  arcsin 1  arcsin( 1) 
2

 3 2

9  x 2 dx represents the area of a semicircle
3
1
9
.]
 (3) 2 
2
2
(7) Make the trigonometric substitution x  2 sec   dx  2 sec  tan  d and
x 2  4  2 tan  
x
x 4
2

2
Thus,
x
1
3
x 4
2
dx 
 8 sec  2 tan  
1
3
 2 sec  tan  d   1
 cos  d 
2
x2  4
C .
8x 2
1
1
1
 x
  sin  cos   C  arc sec  
16
16
16
2
(8)
8
Make the trigonometric substitution x  tan   dx  sec 2  d and
x 2 1 
sec 
x2 1
x

1



1
(sec  )(sec 2  d )  sec 3  d  sec  tan  
2
1
1
1
ln sec x  tan x  C  x x 2  1  ln x  x 2  1  C .
2
2
2
Thus,
x 2  1 dx 
11
(9) Make the u –substitution u  e x  du  e x dx 
e
x
1  e 2 x dx 
 1  u du .
2
Next, make the trigonometric substitution u  sin   du  cos  d and
1
1
1  u 2  cos  
1  u 2 du  cos 2 d    sin  cos   C 
2
2


1
1
arcsin u  u 1  u 2  C 
2
2
1
1
arcsin e x   e x 1  e 2 x  C .
2
2
u
1

1 u2
(10) First, complete the square: 7  6 x  x 2   x 2  6 x  7  ( x 2  6 x)  7 
 ( x 2  6 x  9)  7  9  16  ( x  3) 2 . Next, let u  x  3  du  dx and
x
u 3
u
dx 
du 
du 
x  u 3
2
2
7  6x  x
16  u
16  u 2
1
3
1
1
du  
16  u 2 2 (2u du)  3
du 
2
2
2
16  u
16  u




1
2 16  u 2
2



1
2


 3 arcsin  u4   C   16  u

2
u
 3 arcsin    C 
4
 x  3
 7  6 x  x 2  3 arcsin 
C .
 4 
(11) Make the trigonometric substitution u  a tan   du  a sec 2  d and
u 2  a 2  a sec  


(a sec  )( a sec 2  d )

a 2 tan 2 

sec 
d 
sec 2   1

3
sec  d 


u2  a2
du 
u2
u2  a2
u

sec  

 sec  
 d 
sec 2   1 

a
sec 
d  sec  d  csc  cot  d  ln sec   tan  
tan 2 


12
csc   C  ln
u2  a2 u
u2  a2
 
 C  ln
a
a
u
u2  a2
u a u 
C.
u
2
2
(12) Let u 2  9 x 2  u  3x  du  3dx  using Problem


9 x 2  25
(3 dx)  3
9x 2
3
u 2  25
9 x 2  25
2
du

3
ln
3
x

9
x

25

C.
x
u2
(13) Make the trigonometric substitution x  sec   dx  sec  tan  d and
x 2  1  tan  

x2 1
dx 
x
  sec   1 d  tan     C 

(tan  )(sec  tan  d )

sec 
 tan  d 
2
2
x
x  1  arc sec x  C .
x 1
2
2

1
(14) Make the trigonometric substitution x  sin   dx  cos  d and 1  x 2 
cos  

x3
dx 

sin 3 
cos  d  
cos 
1 x2
1
2
sin 3  d   sin 2  cos   cos   C 
3
3
1
2
 x2 1 x2 
1 x2  C .
3
3

x
1

1 x2
(15) Make the trigonometric substitution x  tan   dx  sec 2  d and
13
x 2 1 
sec  

ln

1
x2 1
dx 

1
(sec 2  d ) 
sec 
sec  d  ln sec   tan   C 
x2 1
x

x2 1  x  C .
1
(16) Make the trigonometric substitution x  tan   dx  sec 2 x dx and 1  x 2 
1
sec 2 
dx

d 
(1  x 2 ) 2
sec 4 
1
1
cos 2 d    sin  cos   C 
2
2
1
1
x  1 

C 
arctan x  
2
2  1  x 2  1  x 2 
1
1 x 
arctan x  
C.
2
2 1 x2 
sec 2  



14
1 x2
x

1
Related documents