Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Integrals Involving Trigonometric Substitution I. Integrals of the Form a2 x2 a 2 x 2 where a is a positive constant. If you make the substitution x a sin , where , then 2 2 Suppose that you have an integral of the form a 2 x 2 a 2 a 2 sin 2 a 2 (1 sin 2 ) a 2 cos 2 a cos because cos 0 since 2 2 . Also, dx a cos d . Also, x a sin x x sin arcsin . a a x a s sin y s and r = a a a2 x2 a2 s2 . a x 2 s 2 a 2 x a 2 s 2 cos Example: Find 4 x 2 dx . Let x 2 sin where . Then 2 2 2 cos d . 4 x 2 2 cos and dx 4 x 2 dx (2 cos )(2 cos d ) 4 cos 2 d 1 1 4 sin cos C 2 2 sin cos C = 2 2 x 2 x x 4 x 2 arcsin 2 2 2 2 C = 2 x x 4 x 2 arcsin + C. 2 2 Let’s check this answer. 2 4 x2 2 d x x 4 x 2 arcsin dx 2 2 1 1 2 1 x 2 2 1 1 2x x 2 2 2 2 4 x 2 x2 4 x2 4 x2 2 4 x2 4 x 2 4 x 2 4 x 2 2(4 x 2 ) 4 x 2 and so it checks. 2 2 2 2 4 x 2 4 x a2 x2 II. Integrals of the Form a 2 x 2 where a is a positive constant. If you make the substitution x a tan , where , then 2 2 Suppose that you have an integral of the form a 2 x 2 a 2 a 2 tan 2 a 2 (1 tan 2 ) a 2 sec 2 a sec because sec 0 since 2 2 . Also, dx a sec 2 d . Also, x a tan x x tan arctan . a a a2 x2 x tan s y s and x = a a a a s r r a s . 2 2 2 Example: Find 2 2 x 2 4 dx . Let x 2 tan where . Then 2 2 2 sec 2 d . x 2 4 2 sec and dx = x 2 4 dx (2 sec )(2 sec 2 d ) 4 sec 3 d 1 1 4 sec tan ln sec tan C 2 sec tan 2 ln sec tan C = 2 2 x 2 4 x 2 ln 2 2 2 x x2 4 2 ln 2 x2 4 x C 2 2 x2 4 x x2 4 x C . 2 2 x2 4 x 2x 1 2x 1 2 1 x2 x x 4 2 1 2 2 2 x2 4 2 x2 4 x 4 x 2 x 4 x x2 4 x2 x2 4 4 x2 4 1 2x 2 8 2 2 2 x 2 4 2 x2 4 2 x2 4 x 4 x x2 4 x 2 4 and so it checks. 2 x 4 Let’s check this answer. d 1 2 x x 4 2 ln dx 2 III. Integrals of the Form x2 a2 x 2 a 2 where a is a positive constant. If you make the substitution x a sec , where 0 or 3 , 2 2 Suppose that you have an integral of the form then x 2 a 2 a 2 sec 2 a 2 a 2 (sec 2 1) a 2 tan 2 a tan because tan 0 for 0 2 or 3 2 . Also, dx a sec tan d . Also, x x x a sec sec arc sec . a a s Consider sec where 0 s 0 2 a x = a and r = s a 2 y 2 s 2 y s 2 a 2 . s Consider sec where 3 s 0 2 a x2 a2 x a and r s a 2 y 2 s 2 y s 2 a 2 . Example: Find a x2 4 dx . x Let x 2 sec where 0 or 3 . Then 2 2 dx 2 sec tan d . Thus, x x2 4 dx x x 2 4 2 tan and 2 tan 2 sec tan d 2 sec 2 tan 2 d 2 (sec 2 1) d 2 tan 2 C x2 4 2arc sec x C = 2 2 2 x2 4 x 3 2 x x 2 4 2arc sec C . This answer does check. 2 a 2 u 2 , a 2 u 2 , and IV. Integrals of the Form u2 a2 A. Sometimes, you should make a u–substitution before you make a trigonometric substitution. Example: Find 9 4x 2 dx . x2 Let u 2 4 x 2 u 2 x du 2dx . Also, a 2 9 a 3 . 9 4x 2 dx = 2 x2 where 2 9 4x 2 2 dx 2 4x 2 2 . 9 u2 du . Let u 3sin u2 9 u 2 3 cos and du 3 cos d 3 cos (3 cos d ) 2 cot 2 d (3 sin ) 2 2 (csc 1) d 2 cot 2 C 2 9 u2 du 2 u2 2 9 u2 2 arcsin u C 2 u 3 9 4x 2 2 arcsin 2 x C = 2 2x 3 9 4x 2 2x 2 arcsin C . x 3 u 3 9 u2 B. Sometimes, you have to complete the square before making a u–substitution or a trigonometric substitution. Example 1: Find 1 dx . 4 x 8 x 13 2 Complete the square for 4 x 2 8 x 13 : 4 x 2 8x 13 4( x 2 2 x ) 13 = 4( x 2 2 x 1) 13 4 = 4( x 1) 2 9 4 Let u 2 4( x 1) 2 u 2( x 1) du 2dx . Also, a 2 9 a 3 . 1 1 1 1 dx dx du Thus, 2 2 2 2 u 9 4 x 8 x 13 4( x 1) 9 1 1 1 u 2( x 1) C . arctan C arctan 2 3 6 3 3 Example 2: Find 15 6 x 9 x 2 dx . Complete the square for 15 6 x 9 x 2 : 15 6 x 9 x 2 9 x 2 6 x 15 2 9 x 2 x 15 3 2 1 9 x 2 x 15 1 3 9 2 16 (9 x 6 x 1) 16 (3x 1) 2 Let u 2 (3x 1) 2 u 3x 1 du 3dx . Also, a 2 16 a 4 . 1 Thus, 15 6 x 9 x 2 dx 16 (3x 1) 2 3dx 3 1 16 u 2 du . Let u 4 sin where . Then, 2 2 3 1 16 u 2 du = 16 u 2 4 cos and du 4 cos d . 3 1 16 8 8 (4 cos )(4 cos d ) cos 2 d sin cos C 3 3 3 3 2 8 u 8 u 16 u arcsin 3 4 4 3 4 C 2 8 3x 1 (3x 1) 15 6 x 9 x arcsin C . 3 6 4 u 4 16 u 2 5 Practice Sheet for Trigonometric Substitution (1) (2) (3) (4) x2 25 4 x 2 dx = x2 dx = x 2 2 x 10 1 x 2 dx = 2 4x 9 1 2 x 2x 5 dx = 3 (5) 1 15 2 x x 1 dx = 2 3 (6) 9 x 2 dx = 3 (7) x (8) (9) (10) 1 3 x 4 2 dx x 2 1 dx e x 1 e 2 x dx x 7 6x x 2 dx 6 (11) u2 a2 du u2 (12) 9 x 2 25 (13) x2 1 dx x (14) (15) (16) 1 x x2 x3 1 x2 1 x 1 2 dx dx dx 1 2 2 dx Solution Key for Trigonometric Substitution (1) First, let u 2 4 x 2 u 2 x du 2 dx 1 8 4x 2 25 4 x 2 2dx 1 8 u2 25 u 2 x2 25 4 x 2 dx = du . Next, make the trigonometric substitution 5 u 5 sin du 5 cos d and 25 u 5 cos 2 u 25 u 2 7 Thus, 1 8 result u2 25 u 2 du 1 8 25 sin 2 5 cos d 25 sin 2 d . Using the 5 cos 8 1 1 sin 2 d sin cos , we get 2 2 x2 25 4 x 2 2 25 25 u 25 u 25 u sin cos C arcsin 16 16 5 5 16 5 25 2 x 25 4 x 2 16 5 5 (2) By long division, Thus, dx 25 16 C 25 arcsin 2 x 16 5 C 25 arcsin 2 x 1 x 25 4 x 2 C . 16 5 8 x2 2 x 10 2x 2 8 . 1 2 1 2 2 2 x 2 x 10 x 2 x 10 x 2 x 10 x 2 x 10 x2 dx 1 dx x 2 2 x 10 2x 2 1 dx 8 dx x 2 x 10 ( x 1) 2 9 2 8 x 1 x ln x 2 2 x 10 arctan C. 3 2 (3) First, let u 2 4 x 2 u 2 x du 2 dx 2 4x 1 2 4x 9 2 2 dx 2 u 1 2 u2 9 1 x 2 4x 9 dx = du . Next, make the trigonometric substitution u 3 sec du 3 sec x tan x dx and u2 9 2 u 3 8 u 2 9 3 tan Thus, 2 u 1 u2 9 2 du 2 1 3 sec tan d 2 9 9 sec (3 tan ) 2 2 2 u 2 9 2 4 x 2 9 sin C C C 9 9 u 9 2 x cos d 4x 2 9 C . 9x (4) First complete the square to get x 2 2 x 5 ( x 1) 2 4 . Next, let u x 1 du dx 1 x 2 2x 5 dx = 1 u2 4 du . Make the trigonometric substitution u 2 tan du 2 sec 2 d and u 2 4 2 sec u2 4 u 2 ln 1 u 4 2 du = 1 2 sec 2 d sec d ln sec tan C = 2 sec u2 4 u C ln 2 2 u 2 4 u C ln x 2 2 x 5 ( x 1) C . (5) First, complete the square: 15 2 x x 2 x 2 2 x 15 ( x 2 2 x 1) 16 16 ( x 1) 2 . Next, let u x 1 du dx 1 16 u 2 1 15 2 x x 2 dx du . Make the trigonometric substitution u 4 sin du 4 cos d 9 and 16 u 2 4 cos 4 u 16 u 2 Thus, 1 16 u 2 4 cos 4 cos d 1d C arcsin 4 C x 1 arcsin C 4 3 x 1 1 dx arcsin arcsin 2 2 4 1 15 2 x x 6 3 1 1 arcsin 0 u 1 du = . [Note: You would not need to make the trigonometric substitution if you recognized that u du = arcsin C .] 4 16 u 2 1 (6) Make the trigonometric substitution x 3 sin dx 3 cos d and 3 cos 3 x 9 x2 Thus, 9 2 9 x 2 dx (3 cos )(3 cos d ) 9 cos 2 d 1 cos 2 d 9 9 sin 2 C 9 9 sin cos C 2 4 2 9 x 9 x 9 x arcsin 2 3 3 2 3 2 2 2 C 9 arcsin x x 9 x C 2 2 3 10 9 x2 3 9 x 3 2 9 x x 9 x dx = arcsin 2 3 2 2 3 3 9 9 9 . [Note: 2 2 2 2 2 of radius 3, 9 9 arcsin 1 arcsin( 1) 2 3 2 9 x 2 dx represents the area of a semicircle 3 1 9 .] (3) 2 2 2 (7) Make the trigonometric substitution x 2 sec dx 2 sec tan d and x 2 4 2 tan x x 4 2 2 Thus, x 1 3 x 4 2 dx 8 sec 2 tan 1 3 2 sec tan d 1 cos d 2 x2 4 C . 8x 2 1 1 1 x sin cos C arc sec 16 16 16 2 (8) 8 Make the trigonometric substitution x tan dx sec 2 d and x 2 1 sec x2 1 x 1 1 (sec )(sec 2 d ) sec 3 d sec tan 2 1 1 1 ln sec x tan x C x x 2 1 ln x x 2 1 C . 2 2 2 Thus, x 2 1 dx 11 (9) Make the u –substitution u e x du e x dx e x 1 e 2 x dx 1 u du . 2 Next, make the trigonometric substitution u sin du cos d and 1 1 1 u 2 cos 1 u 2 du cos 2 d sin cos C 2 2 1 1 arcsin u u 1 u 2 C 2 2 1 1 arcsin e x e x 1 e 2 x C . 2 2 u 1 1 u2 (10) First, complete the square: 7 6 x x 2 x 2 6 x 7 ( x 2 6 x) 7 ( x 2 6 x 9) 7 9 16 ( x 3) 2 . Next, let u x 3 du dx and x u 3 u dx du du x u 3 2 2 7 6x x 16 u 16 u 2 1 3 1 1 du 16 u 2 2 (2u du) 3 du 2 2 2 16 u 16 u 1 2 16 u 2 2 1 2 3 arcsin u4 C 16 u 2 u 3 arcsin C 4 x 3 7 6 x x 2 3 arcsin C . 4 (11) Make the trigonometric substitution u a tan du a sec 2 d and u 2 a 2 a sec (a sec )( a sec 2 d ) a 2 tan 2 sec d sec 2 1 3 sec d u2 a2 du u2 u2 a2 u sec sec d sec 2 1 a sec d sec d csc cot d ln sec tan tan 2 12 csc C ln u2 a2 u u2 a2 C ln a a u u2 a2 u a u C. u 2 2 (12) Let u 2 9 x 2 u 3x du 3dx using Problem 9 x 2 25 (3 dx) 3 9x 2 3 u 2 25 9 x 2 25 2 du 3 ln 3 x 9 x 25 C. x u2 (13) Make the trigonometric substitution x sec dx sec tan d and x 2 1 tan x2 1 dx x sec 1 d tan C (tan )(sec tan d ) sec tan d 2 2 x x 1 arc sec x C . x 1 2 2 1 (14) Make the trigonometric substitution x sin dx cos d and 1 x 2 cos x3 dx sin 3 cos d cos 1 x2 1 2 sin 3 d sin 2 cos cos C 3 3 1 2 x2 1 x2 1 x2 C . 3 3 x 1 1 x2 (15) Make the trigonometric substitution x tan dx sec 2 d and 13 x 2 1 sec ln 1 x2 1 dx 1 (sec 2 d ) sec sec d ln sec tan C x2 1 x x2 1 x C . 1 (16) Make the trigonometric substitution x tan dx sec 2 x dx and 1 x 2 1 sec 2 dx d (1 x 2 ) 2 sec 4 1 1 cos 2 d sin cos C 2 2 1 1 x 1 C arctan x 2 2 1 x 2 1 x 2 1 1 x arctan x C. 2 2 1 x2 sec 2 14 1 x2 x 1