Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Data Mining Tutorial D. A. Dickey NCSU and Miami grad! (before 1809) What is it? • • • • Large datasets Fast methods Not significance testing Topics – Trees (recursive splitting) – Nearest Neighbor – Neural Networks – Clustering – Association Analysis Trees • • • • • • • A “divisive” method (splits) Start with “root node” – all in one group Get splitting rules Response often binary Result is a “tree” Example: Loan Defaults Example: Framingham Heart Study Recursive Splitting Pr{default} =0.007 Pr{default} =0.012 Pr{default} =0.006 X1=Debt To Income Ratio Pr{default} =0.0001 Pr{default} =0.003 No default Default X2 = Age Some Actual Data • Framingham Heart Study • First Stage Coronary Heart Disease – P{CHD} = Function of: • Age - no drug yet! • Cholesterol • Systolic BP Import Example of a “tree” All 1615 patients Split # 1: Age Systolic BP “terminal node” How to make splits? • Which variable to use? • Where to split? – Cholesterol > ____ – Systolic BP > _____ • Goal: Pure “leaves” or “terminal nodes” • Ideal split: Everyone with BP>x has problems, nobody with BP<x has problems Where to Split? • First review Chi-square tests • Contingency tables Heart Disease No Yes Low BP High BP Heart Disease No Yes 95 5 100 75 25 55 45 100 75 25 DEPENDENT INDEPENDENT c2 Test Statistic • Expect 100(150/200)=75 in upper left if independent (etc. e.g. 100(50/200)=25) Heart Disease No Yes Low BP High BP (observed exp ected ) 2 c allcells exp ected 2 95 (75) 55 (75) 5 (25) 45 (25) 100 150 50 200 100 WHERE IS HIGH BP CUTOFF??? 2(400/75)+ 2(400/25) = 42.67 Compare to Tables – Significant! Measuring “Worth” of a Split • P-value is probability of Chi-square as great as that observed if independence is true. (Pr {c2>42.67} is 6.4E-11) • P-values all too small. • Logworth = -log10(p-value) = 10.19 • Best Chi-square max logworth. Logworth for Age Splits Age 47 maximizes logworth How to make splits? • Which variable to use? • Where to split? – Cholesterol > ____ – Systolic BP > _____ • Idea – Pick BP cutoff to minimize p-value for c2 • What does “signifiance” mean now? Multiple testing • 50 different BPs in data, 49 ways to split • Sunday football highlights always look good! • If he shoots enough baskets, even 95% free throw shooter will miss. • Jury trial analogy • Tried 49 splits, each has 5% chance of declaring significance even if there’s no relationship. Multiple testing a= Pr{ falsely reject hypothesis 2} a= Pr{ falsely reject hypothesis 1} Pr{ falsely reject one or the other} < 2a Desired: 0.05 probabilty or less Solution: use a = 0.05/2 Or – compare 2(p-value) to 0.05 Multiple testing • • • • • • 50 different BPs in data, m=49 ways to split Multiply p-value by 49 Bonferroni – original idea Kass – apply to data mining (trees) Stop splitting if minimum p-value is large. For m splits, logworth becomes -log10(m*p-value) Other Split Evaluations • Gini Diversity Index – { A A A A B A B B C B} – Pick 2, Pr{different} = 1-Pr{AA}-Pr{BB}-Pr{CC} • 1-[10+6+0]/45=29/45=0.64 – { AA B C B AA B C C } • 1-[6+3+3]/45 = 33/45 = 0.73 MORE DIVERSE, LESS PURE • Shannon Entropy – Larger more diverse (less pure) – -Si pi log2(pi) {0.5, 0.4, 0.1} 1.36 {0.4, 0.2, 0.3} 1.51 (more diverse) Goals • Split if diversity in parent “node” > summed diversities in child nodes • Observations should be – Homogeneous (not diverse) within leaves – Different between leaves – Leaves should be diverse • Framingham tree used Gini for splits Cross validation • Traditional stats – small dataset, need all observations to estimate parameters of interest. • Data mining – loads of data, can afford “holdout sample” • Variation: n-fold cross validation – Randomly divide data into n sets – Estimate on n-1, validate on 1 – Repeat n times, using each set as holdout. Pruning • Grow bushy tree on the “fit data” • Classify holdout data • Likely farthest out branches do not improve, possibly hurt fit on holdout data • Prune non-helpful branches. • What is “helpful”? What is good discriminator criterion? Goals • Want diversity in parent “node” > summed diversities in child nodes • Goal is to reduce diversity within leaves • Goal is to maximize differences between leaves • Use same evaluation criteria as for splits • Costs (profits) may enter the picture for splitting or evaluation. Accounting for Costs • Pardon me (sir, ma’am) can you spare some change? • Say “sir” to male +$2.00 • Say “ma’am” to female +$5.00 • Say “sir” to female -$1.00 (balm for slapped face) • Say “ma’am” to male -$10.00 (nose splint) Including Probabilities Leaf has Pr(M)=.7, Pr(F)=.3. You say: M F True Gender M 0.7 (2) 0.7 (-10) 0.3 (5) F Expected profit is 2(0.7)-1(0.3) = $1.10 if I say “sir” Expected profit is -7+1.5 = -$5.50 (a loss) if I say “Ma’am” Weight leaf profits by leaf size (# obsns.) and sum Prune (and split) to maximize profits. Additional Ideas • Forests – Draw samples with replacement (bootstrap) and grow multiple trees. • Random Forests – Randomly sample the “features” (predictors) and build multiple trees. • Classify new point in each tree then average the probabilities, or take a plurality vote from the trees • “Bagging” – Bootstrap aggregation • “Boosting” – Similar, iteratively reweights points that were misclassified to produce sequence of more accurate trees. * Lift Chart - Go from leaf of most to least response. - Lift is cumulative proportion responding. Regression Trees • Continuous response (not just class) • Predicted response constant in regions Predict 80 Predict 50 X2 Predict 130 Predict 100 X1 Predict 20 • Predict Pi in cell i. • Yij jth response in cell i. • Split to minimize Si Sj (Yij-Pi)2 Predict 80 Predict 50 Predict 130 Predict 100 Predict 20 • Predict Pi in cell i. • Yij jth response in cell i. • Split to minimize Si Sj (Yij-Pi)2 Logistic Regression • • • • “Trees” seem to be main tool. Logistic – another classifier Older – “tried & true” method Predict probability of response from input variables (“Features”) • Linear regression gives infinite range of predictions • 0 < probability < 1 so not linear regression. • Logistic idea: Map p in (0,1) to L in whole real line • Use L = ln(p/(1-p)) • Model L as linear in temperature • Predicted L = a + b(temperature) • Given temperature X, compute a+bX then p = eL/(1+eL) • p(i) = ea+bXi/(1+ea+bXi) • Write p(i) if response, 1-p(i) if not • Multiply all n of these together, find a,b to maximize Example: Ignition • Flame exposure time = X • Ignited Y=1, did not ignite Y=0 – Y=0, X= 3, 5, 9 10 , 13, 16 – Y=1, X = 11, 12 14, 15, 17, 25, 30 • Q=(1-p)(1-p)(1-p)(1-p)pp(1-p)pp(1-p)ppp • P’s all different p=f(exposure) • Find a,b to maximize Q(a,b) Generate Q for array of (a,b) values DATA LIKELIHOOD; ARRAY Y(14) Y1-Y14; ARRAY X(14) X1-X14; DO I=1 TO 14; INPUT X(I) y(I) @@; END; DO A = -3 TO -2 BY .025; DO B = 0.2 TO 0.3 BY .0025; Q=1; DO i=1 TO 14; L=A+B*X(i); P=EXP(L)/(1+EXP(L)); IF Y(i)=1 THEN Q=Q*P; ELSE Q=Q*(1-P); END; IF Q<0.0006 THEN Q=0.0006; OUTPUT; END;END; CARDS; 3 0 5 0 7 1 9 0 10 0 11 1 12 1 13 0 14 1 15 1 16 0 17 1 25 1 30 1 ; Likelihood function (Q) -2.6 0.23 IGNITION DATA The LOGISTIC Procedure Analysis of Maximum Likelihood Estimates Parameter Intercept TIME DF 1 1 Estimate -2.5879 0.2346 Standard Error 1.8469 0.1502 Wald Chi-Square 1.9633 2.4388 Pr > ChiSq 0.1612 0.1184 Association of Predicted Probabilities and Observed Responses Percent Concordant Percent Discordant Percent Tied Pairs 79.2 20.8 0.0 48 Somers' D Gamma Tau-a c 0.583 0.583 0.308 0.792 4 right, 1 wrong 5 right, 4 wrong Example: Framingham • X=age • Y=1 if heart trouble, 0 otherwise Framingham The LOGISTIC Procedure Analysis of Maximum Likelihood Estimates Parameter DF Intercept age 1 1 Standard Wald Estimate Error Chi-Square -5.4639 0.0630 0.5563 0.0110 96.4711 32.6152 Pr>ChiSq <.0001 <.0001 Example: Shuttle Missions • • • • • O-rings failed in Challenger disaster Low temperature Prior flights “erosion” and “blowby” in O-rings Feature: Temperature at liftoff Target: problem (1) - erosion or blowby vs. no problem (0) Neural Networks • Very flexible functions • “Hidden Layers” • “Multilayer Perceptron” output inputs Logistic function of Logistic functions Of data Arrows represent linear combinations of “basis functions,” e.g. logistics b1 Example: Y = a + b1 p1 + b2 p2 + b3 p3 Y = 4 + p1+ 2 p2 - 4 p3 • Should always use holdout sample • Perturb coefficients to optimize fit (fit data) – Nonlinear search algorithms • Eliminate unnecessary arrows using holdout data. • Other basis sets – Radial Basis Functions – Just normal densities (bell shaped) with adjustable means and variances. Terms • • • • • • • Train: estimate coefficients Bias: intercept a in Neural Nets Weights: coefficients b Radial Basis Function: Normal density Score: Predict (usually Y from new Xs) Activation Function: transformation to target Supervised Learning: Training data has response. Hidden Layer L1 = -1.87 - .27*Age – 0.20*SBP22 H11=exp(L1)/(1+exp(L1)) L2 = -20.76 -21.38*H11 Pr{first_chd} = exp(L2)/(1+exp(L2)) “Activation Function” Demo (optional) • Compare several methods using SAS Enterprise Miner – Decision Tree – Nearest Neighbor – Neural Network Unsupervised Learning • We have the “features” (predictors) • We do NOT have the response even on a training data set (UNsupervised) • Clustering – Agglomerative • Start with each point separated – Divisive • Start with all points in one cluster then spilt EM PROC FASTCLUS • Step 1 – find “seeds” as separated as possible • Step 2 – cluster points to nearest seed – Drift: As points are added, change seed (centroid) to average of each coordinate – Alternatively: Make full pass then recompute seed and iterate. Clusters as Created As Clustered Cubic Clustering Criterion (to decide # of Clusters) • Divide random scatter of (X,Y) points into 4 quadrants • Pooled within cluster variation much less than overall variation • Large variance reduction • Big R-square despite no real clusters • CCC compares random scatter R-square to what you got to decide #clusters • 3 clusters for “macaroni” data. Association Analysis • Market basket analysis – What they’re doing when they scan your “VIP” card at the grocery – People who buy diapers tend to also buy _________ (beer?) – Just a matter of accounting but with new terminology (of course ) – Examples from SAS Appl. DM Techniques, by Sue Walsh: Termnilogy • • • • • • Baskets: ABC ACD BCD ADE BCE Rule Support Confidence X=>Y Pr{X and Y} Pr{Y|X} A=>D 2/5 2/3 C=>A 2/5 2/4 B&C=>D 1/5 1/3 Don’t be Fooled! • Lift = Confidence /Expected Confidence if Independent Checking-> Saving V No (1500) Yes (8500) (10000) No 500 3500 4000 Yes 1000 5000 6000 SVG=>CHKG Expect 8500/10000 = 85% if independent Observed Confidence is 5000/6000 = 83% Lift = 83/85 < 1. Savings account holders actually LESS likely than others to have checking account !!! Summary • Data mining – a set of fast stat methods for large data sets • Some new ideas, many old or extensions of old • Some methods: – Decision Trees – Nearest Neighbor – Neural Nets – Clustering – Association