Download LAMPIRAN A FOTO WIRELESS SERVICE BELL

Document related concepts

Ohm's law wikipedia , lookup

Control system wikipedia , lookup

Islanding wikipedia , lookup

Heterodyne wikipedia , lookup

Spark-gap transmitter wikipedia , lookup

Pulse-width modulation wikipedia , lookup

Electrical substation wikipedia , lookup

Flip-flop (electronics) wikipedia , lookup

Power inverter wikipedia , lookup

History of electric power transmission wikipedia , lookup

Current source wikipedia , lookup

Variable-frequency drive wikipedia , lookup

Stray voltage wikipedia , lookup

Integrating ADC wikipedia , lookup

Resistive opto-isolator wikipedia , lookup

Two-port network wikipedia , lookup

Alternating current wikipedia , lookup

Distribution management system wikipedia , lookup

Voltage optimisation wikipedia , lookup

Rectifier wikipedia , lookup

Mains electricity wikipedia , lookup

Regenerative circuit wikipedia , lookup

Power electronics wikipedia , lookup

Voltage regulator wikipedia , lookup

Buck converter wikipedia , lookup

Schmitt trigger wikipedia , lookup

CMOS wikipedia , lookup

Switched-mode power supply wikipedia , lookup

Current mirror wikipedia , lookup

Immunity-aware programming wikipedia , lookup

Opto-isolator wikipedia , lookup

Transcript
LAMPIRAN A
FOTO WIRELESS SERVICE BELL
LAMPIRAN B
SKEMATIK WIRELESS SERVICE BELL
-------------------------------------------------------------------------SKEMATIK TRANSMITTER ....................................................................
B-1
SKEMATIK RECEIVER ............................................................................
B-2
--------------------------------------------------------------------------
SKEMATIK TRANSMITTER
SKEMATIK RECEIVER
LAMPIRAN C
PROGRAM PADA PENGONTROL MIKRO
ATMEGA16
/*****************************************************
This program was produced by the
CodeWizardAVR V1.25.3 Professional
Automatic Program Generator
© Copyright 1998-2007 Pavel Haiduc, HP InfoTech s.r.l.
http://www.hpinfotech.com
Project :
Version :
Date : 8/3/2010
Author : F4CG
Company : F4CG
Comments:
Chip type
: ATmega16
Program type
: Application
Clock frequency : 11.059200 MHz
Memory model
: Small
External SRAM size : 0
Data Stack size : 256
*****************************************************/
#include <mega16.h>
#include <delay.h>
// Alphanumeric LCD Module functions
#asm
.equ __lcd_port=0x15 ;PORTC
#endasm
#include <lcd.h>
#define RXB8 1
#define TXB8 0
#define UPE 2
#define OVR 3
#define FE 4
#define UDRE 5
#define RXC 7
#define FRAMING_ERROR (1<<FE)
#define PARITY_ERROR (1<<UPE)
#define DATA_OVERRUN (1<<OVR)
#define DATA_REGISTER_EMPTY (1<<UDRE)
#define RX_COMPLETE (1<<RXC)
// USART Receiver buffer
#define RX_BUFFER_SIZE 8
char rx_buffer[RX_BUFFER_SIZE];
#if RX_BUFFER_SIZE<256
unsigned char rx_wr_index,rx_rd_index,rx_counter;
#else
unsigned int rx_wr_index,rx_rd_index,rx_counter;
#endif
// This flag is set on USART Receiver buffer overflow
bit rx_buffer_overflow;
// USART Receiver interrupt service routine
interrupt [USART_RXC] void usart_rx_isr(void)
{
char status,data;
status=UCSRA;
data=UDR;
if ((status & (FRAMING_ERROR | PARITY_ERROR | DATA_OVERRUN))==0)
{
rx_buffer[rx_wr_index]=data;
if (++rx_wr_index == RX_BUFFER_SIZE) rx_wr_index=0;
if (++rx_counter == RX_BUFFER_SIZE)
{
rx_counter=0;
rx_buffer_overflow=1;
};
};
if(data=='R') /*program penanganan data interrupt yang diperoleh untuk mereset LCD*/
{
lcd_clear();
}
}
#ifndef _DEBUG_TERMINAL_IO_
// Get a character from the USART Receiver buffer
#define _ALTERNATE_GETCHAR_
#pragma used+
char getchar(void)
{
char data;
while (rx_counter==0);
data=rx_buffer[rx_rd_index];
if (++rx_rd_index == RX_BUFFER_SIZE) rx_rd_index=0;
#asm("cli")
--rx_counter;
#asm("sei")
return data;
}
#pragma used#endif
// Standard Input/Output functions
#include <stdio.h>
// Declare your global variables here
void main(void)
{
// Declare your local variables here
// Input/Output Ports initialization
// Port A initialization
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In
// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T
PORTA=0x00;
DDRA=0x00;
// Port B initialization
// Func7=Out Func6=Out Func5=Out Func4=Out Func3=Out Func2=Out Func1=Out
Func0=Out
// State7=0 State6=0 State5=0 State4=0 State3=0 State2=0 State1=0 State0=0
PORTB=0x00;
DDRB=0xFF;
// Port C initialization
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In
// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T
PORTC=0x00;
DDRC=0x00;
// Port D initialization
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In
// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T
PORTD=0x00;
DDRD=0x00;
// Timer/Counter 0 initialization
// Clock source: System Clock
// Clock value: Timer 0 Stopped
// Mode: Normal top=FFh
// OC0 output: Disconnected
TCCR0=0x00;
TCNT0=0x00;
OCR0=0x00;
// Timer/Counter 1 initialization
// Clock source: System Clock
// Clock value: Timer 1 Stopped
// Mode: Normal top=FFFFh
// OC1A output: Discon.
// OC1B output: Discon.
// Noise Canceler: Off
// Input Capture on Falling Edge
// Timer 1 Overflow Interrupt: Off
// Input Capture Interrupt: Off
// Compare A Match Interrupt: Off
// Compare B Match Interrupt: Off
TCCR1A=0x00;
TCCR1B=0x00;
TCNT1H=0x00;
TCNT1L=0x00;
ICR1H=0x00;
ICR1L=0x00;
OCR1AH=0x00;
OCR1AL=0x00;
OCR1BH=0x00;
OCR1BL=0x00;
// Timer/Counter 2 initialization
// Clock source: System Clock
// Clock value: Timer 2 Stopped
// Mode: Normal top=FFh
// OC2 output: Disconnected
ASSR=0x00;
TCCR2=0x00;
TCNT2=0x00;
OCR2=0x00;
// External Interrupt(s) initialization
// INT0: Off
// INT1: Off
// INT2: Off
MCUCR=0x00;
MCUCSR=0x00;
// Timer(s)/Counter(s) Interrupt(s) initialization
TIMSK=0x00;
// USART initialization
// Communication Parameters: 8 Data, 1 Stop, No Parity
// USART Receiver: On
// USART Transmitter: On
// USART Mode: Asynchronous
// USART Baud rate: 9600
UCSRA=0x00;
UCSRB=0x98;
UCSRC=0x86;
UBRRH=0x00;
UBRRL=0x47;
// Analog Comparator initialization
// Analog Comparator: Off
// Analog Comparator Input Capture by Timer/Counter 1: Off
ACSR=0x80;
SFIOR=0x00;
// LCD module initialization
lcd_init(16);
// Global enable interrupts
#asm("sei")
while (1)
{
PORTB=0B11111110; /*program pengolah data pada receiver*/
if(PINA.4==1)
if(PINA.7==1)
{
lcd_clear();
lcd_gotoxy(0,0);
lcd_putsf("MEJA 1 BILL");
printf("MEJA 1 BILL ");
}
if(PINA.4==1)
if(PINA.6==1)
{
lcd_clear();
lcd_gotoxy(0,0);
lcd_putsf("MEJA 1 MENU");
printf("MEJA 1 MENU ");
}
delay_ms(100);
PORTB=0B11111101;
if(PINA.4==1)
if(PINA.7==1)
{
lcd_clear();
lcd_gotoxy(0,0);
lcd_putsf("MEJA 2 BILL");
printf("MEJA 2 BILL ");
}
if(PINA.4==1)
if(PINA.6==1)
{
lcd_clear();
lcd_gotoxy(0,0);
lcd_putsf("MEJA 2 MENU");
printf("MEJA 2 MENU ");
}
delay_ms(100);
PORTB=0B11111011;
if(PINA.4==1)
if(PINA.7==1)
{
lcd_clear();
lcd_gotoxy(0,0);
lcd_putsf("MEJA 3 BILL");
printf("MEJA 3 BILL ");
}
if(PINA.4==1)
if(PINA.6==1)
{
lcd_clear();
lcd_gotoxy(0,0);
lcd_putsf("MEJA 3 MENU");
printf("MEJA 3 MENU ");
}
delay_ms(100);
if (PINA.5==0)
{
lcd_clear();
}
};
}
LAMPIRAN D
PROGRAM INTERFACING VB6
Dim x As String /*menetukan tipe data dari variabel x sebagai string*/
Private Sub Command1_Click() /*program penghentian sistem bila button exit di klik*/
MSComm1.PortOpen = False
Unload Me
End Sub
Private Sub Form_Load() /*program pengaktifan komunikasi serial*/
MSComm1.CommPort = 1
MSComm1.Settings = "9600,n,8,1"
MSComm1.PortOpen = True
List1.Clear
End Sub
Private Sub Image10_Click() /*program peresetan dan pengiriman interrupt ketika image10 diklik*/
Image3.Visible = False
Image2.Visible = False
Image1.Visible = True
Image10.Visible = False
Text4.Visible = False
Text5.Visible = False
Timer2.Enabled = False
Timer3.Enabled = False
MSComm1.Output = "R"
End Sub
Private Sub Image11_Click() /*program peresetan dan pengiriman interrupt ketika image11 diklik*/
Image5.Visible = False
Image6.Visible = False
Image4.Visible = True
Image11.Visible = False
Text6.Visible = False
Text7.Visible = False
Timer4.Enabled = False
Timer5.Enabled = False
MSComm1.Output = "R"
End Sub
Private Sub Image12_Click() /*program peresetan dan pengiriman interrupt ketika image12 diklik*/
Image8.Visible = False
Image9.Visible = False
Image7.Visible = True
Image12.Visible = False
Text8.Visible = False
Text9.Visible = False
Timer6.Enabled = False
Timer7.Enabled = False
MSComm1.Output = "R"
End Sub
Private Sub Timer1_Timer() /*program penerimaan, pengecekan data, & pengaturan tampilannya*/
x = MSComm1.Input
If Len(x) > 0 Then
If Left(x, 11) = "MEJA 1 BILL" Then
Image2.Visible = True
Image1.Visible = False
Timer2.Enabled = True
Image10.Visible = True
Text4.Visible = True
Text5.Visible = False
End If
If Left(x, 11) = "MEJA 1 MENU" Then
Image2.Visible = True
Image1.Visible = False
Timer2.Enabled = True
Image10.Visible = True
Text5.Visible = True
Text4.Visible = False
End If
If Left(x, 11) = "MEJA 2 BILL" Then
Image5.Visible = True
Image4.Visible = False
Timer4.Enabled = True
Image11.Visible = True
Text6.Visible = True
Text7.Visible = False
End If
If Left(x, 11) = "MEJA 2 MENU" Then
Image5.Visible = True
Image4.Visible = False
Timer4.Enabled = True
Image11.Visible = True
Text7.Visible = True
Text6.Visible = False
End If
If Left(x, 11) = "MEJA 3 BILL" Then
Image8.Visible = True
Image7.Visible = False
Timer6.Enabled = True
Image12.Visible = True
Text8.Visible = True
Text9.Visible = False
End If
If Left(x, 11) = "MEJA 3 MENU" Then
Image8.Visible = True
Image7.Visible = False
Timer6.Enabled = True
Image12.Visible = True
Text9.Visible = True
Text8.Visible = False
End If
List1.AddItem (x & Format$(Time, "hh:mm:ss AM/PM"))
End If
End Sub
Private Sub Timer2_Timer() /*program membuat image3 berkedip dengan selang waktu tertentu*/
Image3.Visible = True
Timer2.Enabled = False
Timer3.Enabled = True
End Sub
Private Sub Timer3_Timer()
Image3.Visible = False
Timer2.Enabled = True
Timer3.Enabled = False
End Sub
Private Sub Timer4_Timer() /*program membuat image6 berkedip dengan selang waktu tertentu*/
Image6.Visible = True
Timer4.Enabled = False
Timer5.Enabled = True
End Sub
Private Sub Timer5_Timer()
Image6.Visible = False
Timer5.Enabled = False
Timer4.Enabled = True
End Sub
Private Sub Timer6_Timer() /*program membuat image9 berkedip dengan selang waktu tertentu*/
Image9.Visible = True
Timer6.Enabled = False
Timer7.Enabled = True
End Sub
Private Sub Timer7_Timer()
Image9.Visible = False
Timer7.Enabled = False
Timer6.Enabled = True
End Sub
LAMPIRAN E
DATASHEET
-------------------------------------------------------------------------IC HT12D (DECODER) ............................................................................
E-1
IC HT12E (ENCODER) .............................................................................
E-10
MODUL RF TLP-RLP 315 ........................................................................
E-23
IC 74LS04 (INVERTER) ...........................................................................
E-24
IC NE555 (CLOCK) ..................................................................................
E-26
IC MAX232 (TRANSCEIVER) ................................................................
E-36
--------------------------------------------------------------------------
212 Series of Decoders
Features
·
·
·
·
·
·
·
·
Operating voltage: 2.4V~12V
Low power and high noise immunity CMOS
technology
Low standby current
Capable of decoding 12 bits of information
12
Pair with Holtek¢s 2 series of encoders
Binary address setting
Received codes are checked 3 times
·
Address/Data number combination
- HT12D: 8 address bits and 4 data bits
- HT12F: 12 address bits only
Built-in oscillator needs only 5% resistor
Valid transmission indicator
Easy interface with an RF or an infrared
transmission medium
Minimal external components
·
·
·
·
Car alarm system
Security system
Cordless telephones
Other remote control systems
·
·
·
Applications
·
·
·
·
Burglar alarm system
Smoke and fire alarm system
Garage door controllers
Car door controllers
General Description
12
their local addresses. If no error or unmatched
codes are found, the input data codes are decoded and then transferred to the output pins.
The VT pin also goes high to indicate a valid
transmission.
The 2 decoders are a series of CMOS LSIs for
remote control system applications. They are
12
paired with Holtek¢s 2 series of encoders (refer to the encoder/decoder cross reference tabl e ). F o r p r o p e r o p e r at i o n, a p ai r o f
encoder/decoder with the same number of addresses and data format should be chosen.
12
The 2 series of decoders are capable of decoding informations that consist of N bits of address and 12-N bits of data. Of this series, the
HT12D is arranged to provide 8 address bits
and 4 data bits, and HT12F is used to decode 12
bits of address information.
The decoders receive serial addresses and data
12
from a programmed 2 series of encoders that
are transmitted by a carrier using an RF or an
IR transmission medium. They compare the serial input data three times continuously with
Selection Table
Function Address
No.
Part No.
Data
No.
Type
VT
Oscillator
Trigger
Package
HT12D
8
4
L
Ö
RC oscillator DIN active ²Hi² 18 DIP/20 SOP
HT12F
12
0
¾
Ö
RC oscillator DIN active ²Hi² 18 DIP/20 SOP
Notes: Data type: L stands for latch type data output.
VT can be used as a momentary data output.
1
July 12, 1999
212 Series of Decoders
Block Diagram
O S C 2
O S C 1
D iv id e r
O s c illa to r
B u ffe r
D IN
D a ta S h ift
R e g is te r
L a tc h C ir c u it
C o m p a ra to r
C o n tr o l L o g ic
D a ta
D a ta D e te c to r
S y n c . D e te c to r
C o m p a ra to r
T r a n s m is s io n G a te C ir c u it
B u ffe r
A d d re s s
V D D
V T
V S S
Note: The address/data pins are available in various combinations (see the address/data table).
Pin Assignment
8 -A d d re s s
4 -D a ta
8 -A d d re s s
4 -D a ta
1 2 -A d d re s s
0 -D a ta
1 2 -A d d re s s
0 -D a ta
N C
1
2 0
N C
N C
1
2 0
N C
A 0
1
1 8
V D D
A 0
2
1 9
V D D
A 0
1
1 8
V D D
A 0
2
1 9
V D D
A 1
2
1 7
V T
A 1
3
1 8
V T
A 1
2
1 7
V T
A 1
3
1 8
V T
A 2
3
1 6
O S C 1
A 2
4
1 7
O S C 1
A 2
3
1 6
O S C 1
A 2
4
1 7
O S C 1
A 3
4
1 5
O S C 2
A 3
5
1 6
O S C 2
A 3
4
1 5
O S C 2
A 3
5
1 6
O S C 2
A 4
5
1 4
D IN
A 4
6
1 5
D IN
A 4
5
1 4
D IN
A 4
6
1 5
D IN
A 5
6
1 3
D 1 1
A 5
7
1 4
D 1 1
A 5
6
1 3
A 1 1
A 5
7
1 4
A 1 1
A 6
7
1 2
D 1 0
A 6
8
1 3
D 1 0
A 6
7
1 2
A 1 0
A 6
8
1 3
A 1 0
A 7
8
1 1
D 9
A 7
9
1 2
D 9
A 7
8
1 1
A 9
A 7
9
1 2
A 9
V S S
9
1 0
D 8
V S S
1 0
1 1
D 8
V S S
9
1 0
A 8
V S S
1 0
1 1
A 8
H T 1 2 D
1 8 D IP
H T 1 2 D
2 0 S O P
H T 1 2 F
1 8 D IP
2
H T 1 2 F
2 0 S O P
July 12, 1999
212 Series of Decoders
Pin Description
Pin Name
I/O
Internal
Connection
Description
NMOS
Input pins for address A0~A11 setting
TRANSMISSION
They can be externally set to VDD or VSS.
GATE
A0~A11
I
D8~D11
O
CMOS OUT
DIN
I
CMOS IN
VT
O
CMOS OUT
OSC1
I
OSCILLATOR
Oscillator input pin
OSC2
O
OSCILLATOR
Oscillator output pin
VSS
I
¾
Negative power supply (GND)
VDD
I
¾
Positive power supply
Output data pins
Serial data input pin
Valid transmission, active high
Approximate internal connection circuits
N M O S
T R A N S M IS S IO N
G A T E
C M O S O U T
C M O S IN
O S C IL L A T O R
E N
O S C 1
O S C 2
Absolute Maximum Ratings
Supply Voltage...............................-0.3V to 13V
Storage Temperature.................-50°C to 125°C
Input Voltage....................VSS-0.3 to VDD+0.3V
Operating Temperature ..............-20°C to 75°C
Note: These are stress ratings only. Stresses exceeding the range specified under ²Absolute Maximum Ratings² may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged
exposure to extreme conditions may affect device reliability.
3
July 12, 1999
212 Series of Decoders
Electrical Characteristics
Symbol
Parameter
Ta=25°C
Test Conditions
VDD
Conditions
¾
¾
Min.
Typ.
Max.
Unit
2.4
5
12
V
¾
0.1
1
mA
¾
2
4
mA
VDD
Operating Voltage
ISTB
Standby Current
IDD
Operating Current
5V
No load
fOSC=150kHz
¾
200
400
mA
Data Output Source
Current (D8~D11)
5V
VOH=4.5V
-1
-1.6
¾
mA
Data Output Sink
Current (D8~D11)
5V
VOL=0.5V
1
1.6
¾
mA
VOH=4.5V
-1
-1.6
¾
mA
VOL=0.5V
1
1.6
¾
mA
IO
IVT
VT Output Source Current
VT Output Sink Current
5V
12V
5V
Oscillator stops
VIH
²H² Input Voltage
5V
¾
3.5
¾
5
V
VIL
²L² Input Voltage
5V
¾
0
¾
1
V
fOSC
Oscillator Frequency
5V
¾
150
¾
kHz
ROSC=51kW
4
July 12, 1999
212 Series of Decoders
Functional Description
Flowchart
Operation
12
The oscillator is disabled in the standby state
and activated when a logic ²high² signal applies
to the DIN pin. That is to say, the DIN should be
kept low if there is no signal input.
The 2 series of decoders provides various combinations of addresses and data pins in differ12
ent packages so as to pair with the 2 series of
encoders.
The decoders receive data that are transmitted
by an encoder and interpret the first N bits of
code period as addresses and the last 12-N bits
as data, where N is the address code number. A
signal on the DIN pin activates the oscillator
which in turn decodes the incoming address
and data. The decoders will then check the received address three times continuously. If the
received address codes all match the contents of
the decoder¢s local address, the 12-N bits of
data are decoded to activate the output pins
and the VT pin is set high to indicate a valid
transmission. This will last unless the address
code is incorrect or no signal is received.
P o w e r o n
S ta n d b y m o d e
N o
Y e s
A d d r e s s b its
m a tc h e d ?
S to re d a ta
M a tc h
p r e v io u s s to r e d
d a ta ?
Output type
12
Of the 2 series of decoders, the HT12F has no
data output pin but its VT pin can be used as a
momentary data output. The HT12D, on the
other hand, provides 4 latch type data pins
whose data remain unchanged until new data
are received.
8
Latch
2.4V~12V
HT12F
0
12
¾
2.4V~12V
N o
Y e s
N o
3 tim e s
o f c h e c k in g
c o m p le te d ?
Y e s
L a tc h d a ta
to o u tp u t &
a c tiv a te V T
Part Data Address Output Operating
No. Pins Pins
Type
Voltage
4
N o
Y e s
The output of the VT pin is high only when the
transmission is valid. Otherwise it is always
low.
HT12D
D is a b le V T &
ig n o r e th e r e s t o f
th is w o r d
C o d e in ?
N o
A d d re s s o r
d a ta e rro r ?
Y e s
5
July 12, 1999
212 Series of Decoders
Decoder timing
E n c o d e r
T r a n s m is s io n
E n a b le
< 1 w o rd
E n c o d e r
D O U T
T r a n s m itte d
C o n tin u o u s ly
4 w o rd s
2
1 4
4 w o rd s
c lo c k s
2
1 4
c lo c k s
D e c o d e r V T
c h e c k
c h e c k
L a tc h e d
D a ta O u t
Encoder/Decoder cross reference table
Package
Decoders
Part No.
Data Pins
Address Pins
VT Pair Encoder
HT12D
4
8
Ö
HT12F
0
12
Ö
Encoder
DIP
SOP
HT12A
18
20
HT12E
18
20
HT12A
18
20
HT12E
18
20
Decoder
DIP
SOP
18
20
18
20
Address/Data sequence
12
The following table provides address/data sequence for various models of the 2 series of decoders. A
correct device should be chosen according to the requirements of the individual addresses and data.
Part No.
Address/Data Bits
0
1
2
3
4
5
6
7
8
9
10
11
HT12D
A0
A1
A2
A3
A4
A5
A6
A7
D8
D9
D10
D11
HT12F
A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
6
July 12, 1999
212 Series of Decoders
Oscillator frequency vs supply voltage
fo s c
(S c a le )
R o s c (W )
4 .0 0
2 7 k
3 .5 0
3 0 k
3 3 k
3 .0 0
3 6 k
3 9 k
4 3 k
2 .5 0
4 7 k
5 1 k
5 6 k
2 .0 0
6 2 k
6 8 k
7 5 k
1 .5 0
8 2 k
1 0 0 k
1 2 0 k
(1 0 0 k H z )1 .0 0
1 5 0 k
1 8 0 k
2 2 0 k
0 .5 0
0 .2 5
2
3
4
5
6
7
8
9
1 0
1 1
1 2
1 3
V D D (V D C )
The recommended oscillator frequency is fOSCD (decoder) @ 50 fOSCE (HT12E encoder)
1
@ fOSCE (HT12A encoder).
3
7
July 12, 1999
212 Series of Decoders
Application Circuits
R e c e iv e r C ir c u it
1
2
3
4
5
6
7
8
9
A 0
V D D
A 1
V T
A 2
O S C 1
A 3
O S C 2
A 4
D IN
A 5
D 1 1
A 6
D 1 0
A 7
D 9
V S S
D 8
R e c e iv e r C ir c u it
1 8
V D D
1
2
1 7
3
1 6
1 5
R O S C
4
1 4
5
1 3
6
1 2
7
1 1
8
1 0
9
H T 1 2 D
V D D
1 8
A 0
V D D
A 1
V T
A 2
O S C 1
A 3
O S C 2
A 4
D IN
A 5
A 1 1
A 6
A 1 0
1 2
A 7
A 9
1 1
V S S
A 8
1 0
1 7
1 6
1 5
R O S C
1 4
1 3
H T 1 2 F
Notes: Typical infrared receiver: PIC-12043T/PIC-12043S (KODESHI CORP.)
or LTM9052 (LITEON CORP.)
Typical RF receiver: JR-200 (JUWA CORP.)
RE-99 (MING MICROSYSTEM, U.S.A.)
8
July 12, 1999
212 Series of Decoders
Holtek Semiconductor Inc. (Headquarters)
No.3 Creation Rd. II, Science-based Industrial Park, Hsinchu, Taiwan, R.O.C.
Tel: 886-3-563-1999
Fax: 886-3-563-1189
Holtek Semiconductor Inc. (Taipei Office)
5F, No.576, Sec.7 Chung Hsiao E. Rd., Taipei, Taiwan, R.O.C.
Tel: 886-2-2782-9635
Fax: 886-2-2782-9636
Fax: 886-2-2782-7128 (International sales hotline)
Holtek Microelectronics Enterprises Ltd.
RM.711, Tower 2, Cheung Sha Wan Plaza, 833 Cheung Sha Wan Rd., Kowloon, Hong Kong
Tel: 852-2-745-8288
Fax: 852-2-742-8657
Copyright ã 1999 by HOLTEK SEMICONDUCTOR INC.
The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek
assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are
used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications
will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek reserves the right to alter its products without prior
notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.tw.
9
July 12, 1999
This datasheet has been downloaded from:
www.DatasheetCatalog.com
Datasheets for electronic components.
2
12
HT12A/HT12E
Series of Encoders
Features
·
·
·
·
Operating voltage
- 2.4V~5V for the HT12A
- 2.4V~12V for the HT12E
Low power and high noise immunity CMOS
technology
Low standby current: 0.1mA (typ.) at
VDD=5V
HT12A with a 38kHz carrier for infrared
transmission medium
·
·
·
·
Minimum transmission word
- Four words for the HT12E
- One word for the HT12A
Built-in oscillator needs only 5% resistor
Data code has positive polarity
Minimal external components
HT12A/E: 18-pin DIP/20-pin SOP package
·
·
·
·
Car alarm system
Security system
Cordless telephones
Other remote control systems
·
Applications
·
·
·
·
Burglar alarm system
Smoke and fire alarm system
Garage door controllers
Car door controllers
General Description
The 212 encoders are a series of CMOS LSIs for
remote control system applications. They are
capable of encoding information which consists
of N address bits and 12-N data bits. Each address/data input can be set to one of the two
logic states. The programmed addresses/data
are transmitted together with the header bits
via an RF or an infrared transmission medium
upon receipt of a trigger signal. The capability
to select a TE trigger on the HT12E or a DATA
trigger on the HT12A further enhances the application flexibility of the 212 series of encoders.
The HT12A additionally provides a 38kHz carrier for infrared systems.
Selection Table
Function Address Address/ Data
Oscillator
No.
Data No. No.
Part No.
Trigger
Package
Carrier
Output
Negative
Polarity
HT12A
8
0
4
455kHz
resonator
D8~D11
18 DIP
20 SOP
38kHz
No
HT12E
8
4
0
RC
oscillator
TE
18 DIP
20 SOP
No
No
Note: Address/Data represents pins that can be address or data according to the decoder requirement.
1
April 11, 2000
HT12A/HT12E
Block Diagram
TE trigger
HT12E
O S C 2
O S C 1
O s c illa to r
T E
A 0
1 2 T r a n s m is s io n
G a te C ir c u it
A 7
D a ta S e le c t
& B u ffe r
¸ 3 D iv id e r
D O U T
S y n c .
C ir c u it
¸ 1 2 C o u n te r &
1 o f 1 2 D e c o d e r
B in a r y D e te c to r
A D 8
A D 1 1
V D D
V S S
DATA trigger
HT12A
X 2
X 1
O s c illa to r
D a ta S e le c t
& B u ffe r
¸ 5 7 6 D iv id e r
D O U T
L /M B
A 0
1 2 T r a n s m is s io n
G a te C ir c u it
A 7
S y n c .
C ir c u it
¸ 1 2 C o u n te r &
1 o f 1 2 D e c o d e r
B in a r y D e te c to r
D 8
D 1 1
V D D
V S S
Note: The address data pins are available in various combinations (refer to the address/data table).
2
April 11, 2000
HT12A/HT12E
Pin Assignment
8 -A d d re s s
4 -D a ta
8 -A d d re s s
4 -D a ta
8 -A d d re s s
4 -A d d r e s s /D a ta
8 -A d d re s s
4 -A d d r e s s /D a ta
N C
1
2 0
N C
N C
1
2 0
N C
A 0
1
1 8
V D D
A 0
2
1 9
V D D
A 0
1
1 8
V D D
A 0
2
1 9
V D D
A 1
2
1 7
D O U T
A 1
3
1 8
D O U T
A 1
2
1 7
D O U T
A 1
3
1 8
D O U T
A 2
3
1 6
X 1
A 2
4
1 7
X 1
A 2
3
1 6
O S C 1
A 2
4
1 7
O S C 1
A 3
4
1 5
X 2
A 3
5
1 6
X 2
A 3
4
1 5
O S C 2
A 3
5
1 6
O S C 2
A 4
5
1 4
L /M B
A 4
6
1 5
L /M B
A 4
5
1 4
T E
A 4
6
1 5
T E
A 5
6
1 3
D 1 1
A 5
7
1 4
D 1 1
A 5
6
1 3
A D 1 1
A 5
7
1 4
A D 1 1
A 6
7
1 2
D 1 0
A 6
8
1 3
D 1 0
A 6
7
1 2
A D 1 0
A 6
8
1 3
A D 1 0
A 7
8
1 1
D 9
A 7
9
1 2
D 9
A 7
8
1 1
A D 9
A 7
9
1 2
A D 9
V S S
9
1 0
D 8
V S S
1 0
1 1
D 8
V S S
9
1 0
A D 8
V S S
1 0
1 1
A D 8
H T 1 2 A
2 0 S O P
H T 1 2 A
1 8 D IP
H T 1 2 E
1 8 D IP
H T 1 2 E
2 0 S O P
Pin Description
Pin Name
I/O
Internal
Connection
Description
CMOS IN
Pull-high
(HT12A)
A0~A7
AD8~AD11
I
I
NMOS
Input pins for address A0~A7 setting
TRANSMISSION These pins can be externally set to VSS or left open
GATE
PROTECTION
DIODE
(HT12E)
NMOS
TRANSMISSION
Input pins for address/data AD8~AD11 setting
GATE
PROTECTION These pins can be externally set to VSS or left open
DIODE
(HT12E)
D8~D11
I
CMOS IN
Pull-high
DOUT
O
CMOS OUT
L/MB
I
CMOS IN
Pull-high
Input pins for data D8~D11 setting and transmission enable, active low
These pins should be externally set to VSS or left open
(see Note)
Encoder data serial transmission output
Latch/Momentary transmission format selection pin:
Latch: Floating or VDD
Momentary: VSS
3
April 11, 2000
HT12A/HT12E
I/O
Internal
Connection
TE
I
CMOS IN
Pull-high
OSC1
I
OSCILLATOR 1
Oscillator input pin
OSC2
O
OSCILLATOR 1
Oscillator output pin
X1
I
OSCILLATOR 2
455kHz resonator oscillator input
X2
O
OSCILLATOR 2
455kHz resonator oscillator output
VSS
I
¾
Negative power supply, grounds
VDD
I
¾
Positive power supply
Pin Name
Description
Transmission enable, active low (see Note)
Note: D8~D11 are all data input and transmission enable pins of the HT12A.
TE is a transmission enable pin of the HT12E.
Approximate internal connections
N M O S
T R A N S M IS S IO N
G A T E
C M O S IN
P u ll- h ig h
C M O S O U T
O S C IL L A T O R 1
E N
O S C 1
N M O S T R A N S M IS S IO N G A T E
P R O T E C T IO N D IO D E
O S C IL L A T O R 2
X 1
O S C 2
X 2
V
D D
Absolute Maximum Ratings
Supply Voltage (HT12A) ..............-0.3V to 5.5V
Supply Voltage (HT12E) ...............-0.3V to 13V
Input Voltage....................VSS-0.3 to VDD+0.3V
Storage Temperature.................-50°C to 125°C
Operating Temperature...............-20°C to 75°C
Note: These are stress ratings only. Stresses exceeding the range specified under ²Absolute Maximum Ratings² may cause substantial damage to the device. Functional operation of this device
at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.
4
April 11, 2000
HT12A/HT12E
Electrical Characteristics
Ta=25°C
HT12A
Symbol
Parameter
VDD
Operating Voltage
ISTB
Standby Current
IDD
IDOUT
Operating Current
Output Drive Current
Test Conditions
Min.
Typ.
Max.
Unit
2.4
3
5
V
¾
0.1
1
mA
¾
0.1
1
mA
No load
fOSC=455kHz
¾
200
400
mA
¾
400
800
mA
VOH=0.9VDD (Source)
-1
-1.6
¾
mA
VOL=0.1VDD (Sink)
2
3.2
¾
mA
VDD
Conditions
¾
¾
3V
5V
3V
5V
5V
Oscillator stops
VIH
²H² Input Voltage
¾
¾
0.8VDD
¾
VDD
V
VIL
²L² Input Voltage
¾
¾
0
¾
0.2VDD
V
RDATA
D8~D11 Pull-high
Resistance
5V
¾
150
300
kW
VDATA=0V
Ta=25°C
HT12E
Symbol
Parameter
VDD
Operating Voltage
ISTB
Standby Current
IDD
IDOUT
Operating Current
Output Drive Current
Test Conditions
Min.
Typ.
Max.
Unit
2.4
5
12
V
¾
0.1
1
mA
¾
2
4
mA
¾
40
80
mA
¾
150
300
mA
VOH=0.9VDD (Source)
-1
-1.6
¾
mA
VOL=0.1VDD (Sink)
1
1.6
¾
mA
VDD
Conditions
¾
¾
3V
12V
Oscillator stops
3V
No load
12V fOSC=3kHz
5V
VIH
²H² Input Voltage
¾
¾
0.8VDD
¾
VDD
V
VIL
²L² Input Voltage
¾
¾
0
¾
0.2VDD
V
fOSC
Oscillator Frequency
5V
ROSC=1.1MW
¾
3
¾
kHz
RTE
TE Pull-high Resistance
5V
VTE=0V
¾
1.5
3
MW
5
April 11, 2000
HT12A/HT12E
Functional Description
Operation
The 212 series of encoders begin a 4-word transmission cycle upon receipt of a transmission enable
(TE for the HT12E or D8~D11 for the HT12A, active low). This cycle will repeat itself as long as the
transmission enable (TE or D8~D11) is held low. Once the transmission enable returns high the encoder output completes its final cycle and then stops as shown below.
T E
< 1 w o rd
E n c o d e r
D O U T
T r a n s m itte d
C o n tin u o u s ly
4 w o rd s
4 w o rd s
Transmission timing for the HT12E
D 8 ~ D 1 1
K e y - in
< 1 w o rd
E n c o d e r
D O U T
w ith 3 8 k H z c a r r ie r
T r a n s m itte d
C o n tin u o u s ly
1 w o rd
1 w o rd
Transmission timing for the HT12A (L/MB=Floating or VDD)
D 8 ~ D 1 1
K e y - in
( a ll d a ta = 1 )
7 w o rd s
< 1 w o rd
E n c o d e r
D O U T
T r a n s m itte d
C o n tin u o u s ly
7 w o rd s
1 w o rd
( a ll d a ta = 1 )
1 w o rd
Transmission timing for the HT12A (L/MB=VSS)
6
April 11, 2000
HT12A/HT12E
Information word
If L/MB=1 the device is in the latch mode (for use with the latch type of data decoders). When the transmission enable is removed during a transmission, the DOUT pin outputs a complete word and then
stops. On the other hand, if L/MB=0 the device is in the momentary mode (for use with the momentary
type of data decoders). When the transmission enable is removed during a transmission, the DOUT
outputs a complete word and then adds 7 words all with the ²1² data code.
An information word consists of 4 periods as illustrated below.
1 /3 b it s y n c . p e r io d
a d d r e s s c o d e p e r io d
p ilo t p e r io d ( 1 2 b its )
d a ta c o d e
p e r io d
Composition of information
Address/data waveform
Each programmable address/data pin can be externally set to one of the following two logic states as
shown below.
fO
S C
"O n e "
"Z e ro "
A d d re s s /
D a ta B it
Address/Data bit waveform for the HT12E
fO
S C
3 8 k H z
c a r r ie r
"O n e "
D a ta B it
"Z e ro "
D a ta B it
"O n e "
A d d r e s s B it
"Z e ro "
A d d r e s s B it
Address/Data bit waveform for the HT12A
7
April 11, 2000
HT12A/HT12E
The address/data bits of the HT12A are transmitted with a 38kHz carrier for infrared remote controller flexibility.
Address/data programming (preset)
The status of each address/data pin can be individually pre-set to logic ²high² or ²low². If a transmission-enable signal is applied, the encoder scans and transmits the status of the 12 bits of address/data serially in the order A0 to AD11 for the HT12E encoder and A0 to D11 for the HT12A
encoder.
During information transmission these bits are transmitted with a preceding synchronization bit. If
the trigger signal is not applied, the chip enters the standby mode and consumes a reduced current of
less than 1mA for a supply voltage of 5V.
Usual applications preset the address pins with individual security codes using DIP switches or PCB
wiring, while the data is selected by push buttons or electronic switches.
The following figure shows an application using the HT12E:
O S C 1
O S C 2
D O U T
V D D
V
A 0
A 1
A 2
A 3
A 4
A 5
A 6
A 7
V S S
T E
A D 8
T r a n s m is s io n
m e d iu m
A D 9 A D 1 0 A D 1 1
D D
V S S
The transmitted information is as shown:
Pilot
&
Sync.
A0
A1
A2
A3
A4
A5
A6
A7
AD8
AD9
1
0
1
0
0
0
1
1
1
1
8
AD10 AD11
1
0
April 11, 2000
HT12A/HT12E
Address/Data sequence
The following provides the address/data sequence table for various models of the 212 series of
encoders. The correct device should be selected according to the individual address and data requirements.
Part No.
Address/Data Bits
0
1
2
3
4
5
6
7
8
9
10
11
HT12A
A0
A1
A2
A3
A4
A5
A6
A7
D8
D9
D10
D11
HT12E
A0
A1
A2
A3
A4
A5
A6
A7
AD8
AD9 AD10 AD11
Transmission enable
For the HT12E encoders, transmission is enabled by applying a low signal to the TE pin. For the
HT12A encoders, transmission is enabled by applying a low signal to one of the data pins D8~D11.
Two erroneous HT12E application circuits
The HT12E must follow closely the application circuits provided by Holtek (see the ²Application circuits²).
· Error: AD8~AD11 pins input voltage > VDD+0.3V
O S C 2
V D D
O S C 1
A D 1 1
T E
A D 1 0
A D 9
V S S
A D 8
1 2 V
H T 1 2 E
9
April 11, 2000
HT12A/HT12E
· Error: The IC¢s power source is activated by pins AD8~AD11
1 2 V
O S C 2
V D D
O S C 1
A D 1 1
T E
A D 1 0
A D 9
V S S
A D 8
H T 1 2 E
Flowchart
· HT12A
· HT12E
N o
P o w e r o n
P o w e r o n
S ta n d b y m o d e
S ta n d b y m o d e
N o
D a ta e n a b le ?
Y e s
T r a n s m is s io n
e n a b le d ?
Y e s
4 d a ta w o rd s
tr a n s m itte d
D a ta w ith c a r r ie r
s e r ia l o u tp u t
D a ta s till e n a b le d ?
Y e s
N o
N o
L /M B = G N D ?
T r a n s m is s io n
s till e n a b le d
Y e s
4 d a ta w o rd s
tr a n s m itte d
c o n tin u o u s ly
Y e s
N o
S e n d th e
la s t c o d e
S e n d ² 1 ² 7 tim e s fo r
a ll o f th e d a ta c o d e s
Note: D8~D11 are transmission enables of the HT12A.
TE is the transmission enable of the HT12E.
10
April 11, 2000
HT12A/HT12E
Oscillator frequency vs supply voltage
fO S C
(S c a le )
R
(W )
O S C
7 .0 0
4 7 0 k
5 1 0 k
6 .0 0
5 6 0 k
6 2 0 k
5 .0 0
6 8 0 k
7 5 0 k
4 .0 0
8 2 0 k
9 1 0 k
1 .0 M
(3 k H z )3 .0 0
1 .2 M
1 .5 M
2 .0 0
2 .0 M
1 .0 0
2
3
4
5
6
7
8
9
1 0
1 1
1 2
1 3
V
D D
(V D C )
The recommended oscillator frequency is fOSCD (decoder) @ 50 fOSCE (HT12E encoder)
1
@ fOSCE (HT12A encoder)
3
11
April 11, 2000
HT12A/HT12E
Application Circuits
V
1 0 0 W
D D
T r a n s m itte r C ir c u it
V
1
2
3
4
5
6
7
8
9
A 0
V D D
A 1
D O U T
A 2
X 1
A 3
X 2
A 4
L /M B
A 5
D 1 1
A 6
D 1 0
A 7
D 9
V S S
D 8
1 8
1
A 0
V D D
1 8
2
A 1
D O U T
1 7
3
A 2
O S C 1
1 6
4
A 3
O S C 2
1 5
1 4
5
A 4
T E
1 4
1 3
6
A 5
A D 1 1
1 3
1 2
7
A 6
A D 1 0
1 2
1 1
8
A 7
A D 9
1 1
1 0
9
V S S
A D 8
1 7
1 0 k W
1 6
4 5 5 k W
1 5
8 0 5 0
1 0 0 p F
1 0 M W
1 0 0 p F
H T 1 2 A
R
D D
O S C
1 0
H T 1 2 E
Note: Typical infrared diode: EL-1L2 (KODENSHI CORP.)
Typical RF transmitter: JR-220 (JUWA CORP.)
12
April 11, 2000
HT12A/HT12E
Holtek Semiconductor Inc. (Headquarters)
No.3 Creation Rd. II, Science-based Industrial Park, Hsinchu, Taiwan, R.O.C.
Tel: 886-3-563-1999
Fax: 886-3-563-1189
Holtek Semiconductor Inc. (Taipei Office)
5F, No.576, Sec.7 Chung Hsiao E. Rd., Taipei, Taiwan, R.O.C.
Tel: 886-2-2782-9635
Fax: 886-2-2782-9636
Fax: 886-2-2782-7128 (International sales hotline)
Holtek Semiconductor (Hong Kong) Ltd.
RM.711, Tower 2, Cheung Sha Wan Plaza, 833 Cheung Sha Wan Rd., Kowloon, Hong Kong
Tel: 852-2-745-8288
Fax: 852-2-742-8657
Copyright Ó 2000 by HOLTEK SEMICONDUCTOR INC.
The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek
assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are
used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications
will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek reserves the right to alter its products without prior
notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.tw.
13
April 11, 2000
TLP434A & RLP434A RF ASK Hybrid Modules for Radio Control ( New Version )
TLP434A Ultra Small Transmitter
RLP434A SAW Based Receiver
10.3mm
13.3mm
Easy-Link
Wireless
1
2
3
4
13.0mm
pin 1 : Gnd
pin 2 : Digital Data Output
pin 3 : Linear Output /Test
pin 4 : Vcc
pin 5 : Vcc
pin 6 : Gnd
pin 7 : Gnd
pin 8 : Antenna
43.42mm
pin 1 : GND
pin 2 : Data In
pin 3 : Vcc
pin 4 : Antenna ( RF output )
11.5mm
1
3
2
3
4
4
5
7
6
7
8
8
24.72mm
10.5mm
2.54mm
Frequency 315, 418 and 433.92 Mhz
Modulation : ASK
Supply Voltage : 3.3 - 6.0 VDC
Output : Digital & Linear
Frequency 315, 418 and 433.92 Mhz
Modulation : ASK
Operation Voltage : 2 - 12 VDC
Symbol
Vcc
Icc 1
Icc 2
Vh
Vl
FO
PO
Parameter
Conditions
Operating supply voltage
Peak Current (2V)
Peak Current (12V)
Input High Voltage
Input Low Voltage
Absolute Frequency
RF Output Power- 50ohm
Min
Typ
2.0
Idata= 100uA (High) Vcc-0.5
Vcc
Idata= 0 uA (Low)
315Mhz module
314.8
315
Vcc = 9V-12V
16
Vcc = 5V-6V
14
DR
Data Rate
External Encoding
512
4.8K
Notes : ( Case Temperature = 25°C +- 2°C , Test Load Impedance = 50 ohm )
Max
Unit
12.0
1.64
19.4
Vcc+0.5
0.3
315.2
200K
V
mA
mA
V
V
MHz
dBm
dBm
bps
Application Circuit :
Typical Key-chain Transmitter using HT12E-18DIP, a Binary 12 bit Encoder from
Holtek Semiconductor Inc.
Symbol
Parameter
Vcc Operating supply voltage
Itot Operating Current
Vdata
Data Out
Conditions
Idata = +200 uA ( High )
Idata = -10 uA ( Low )
Min
Typ
Max
3.3
Vcc-0.5
-
5.0V
4.5
-
6.0
Vcc
0.3
Electrical Characteristics
Characteristics
Operation Radio Frequency
Sensitivity
Channel Width
Noise Equivalent BW
Receiver Turn On Time
Operation Temperature
Baseboard Data Rate
SYM
FC
Pref
Min
Top
-20
Typ
315, 418 and 433.92
-110
+-500
4
5
4.8
Max
80
Application Circuit :
Typical RF Receiver using HT12D-18DIP, a Binary 12 bit Decoder with 8 bit uC HT48RXX from
Holtek Semiconductor Inc.
Laipac Technology, Inc.
105 West Beaver Creek Rd. Unit 207 Richmond Hill Ontario L4B 1C6 Canada
Tel: (905)762-1228 Fax: (905)763-1737 e-mail: [email protected]
V
mA
V
V
Unit
MHz
dBm
Khz
Khz
ms
C
KHz
SN54/74LS04
HEX INVERTER
HEX INVERTER
VCC
14
1
LOW POWER SCHOTTKY
13
2
12
11
3
4
10
5
9
6
8
J SUFFIX
CERAMIC
CASE 632-08
7
14
GND
1
N SUFFIX
PLASTIC
CASE 646-06
14
1
14
1
D SUFFIX
SOIC
CASE 751A-02
ORDERING INFORMATION
SN54LSXXJ
SN74LSXXN
SN74LSXXD
Ceramic
Plastic
SOIC
GUARANTEED OPERATING RANGES
Parameter
Symbol
Min
Typ
Max
Unit
VCC
Supply Voltage
54
74
4.5
4.75
5.0
5.0
5.5
5.25
V
TA
Operating Ambient Temperature Range
54
74
– 55
0
25
25
125
70
°C
IOH
Output Current — High
54, 74
– 0.4
mA
IOL
Output Current — Low
54
74
4.0
8.0
mA
FAST AND LS TTL DATA
5-1
SN54/74LS04
DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)
Limits
Symbol
Min
Parameter
VIH
Input HIGH Voltage
VIL
Input LOW Voltage
VIK
Input Clamp Diode Voltage
VOH
Output HIGH Voltage
VOL
Output LOW Voltage
IIH
Input HIGH Current
IIL
Input LOW Current
IOS
Short Circuit Current (Note 1)
ICC
Power Supply Current
Total, Output HIGH
Total, Output LOW
Typ
Max
2.0
54
0.7
74
0.8
– 0.65
– 1.5
Unit
Test Conditions
V
Guaranteed Input HIGH Voltage for
All Inputs
V
Guaranteed Input
p LOW Voltage
g for
All Inputs
V
VCC = MIN, IIN = – 18 mA
54
2.5
3.5
V
74
2.7
3.5
V
VCC = MIN,, IOH = MAX,, VIN = VIH
or VIL per Truth Table
54, 74
0.25
0.4
V
IOL = 4.0 mA
74
0.35
0.5
V
IOL = 8.0 mA
– 20
VCC = VCC MIN,
VIN = VIL or VIH
per Truth Table
20
µA
VCC = MAX, VIN = 2.7 V
0.1
mA
VCC = MAX, VIN = 7.0 V
– 0.4
mA
VCC = MAX, VIN = 0.4 V
–100
mA
VCC = MAX
2.4
mA
VCC = MAX
6.6
Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.
AC CHARACTERISTICS (TA = 25°C)
Limits
Symbol
Parameter
Min
Typ
Max
Unit
Test Conditions
VCC = 5.0 V
CL = 15 pF
tPLH
Turn-Off Delay, Input to Output
9.0
15
ns
tPHL
Turn-On Delay, Input to Output
10
15
ns
FAST AND LS TTL DATA
5-2
NE555
SA555 - SE555

GENERAL PURPOSE SINGLE BIPOLAR TIMERS
..
..
.
..
.
LOW TURN OFF TIME
MAXIMUM
OPERATING
FREQUENCY
GREATER THAN 500kHz
TIMING FROM MICROSECONDS TO HOURS
OPERATES IN BOTH ASTABLE AND
MONOSTABLE MODES
HIGH OUTPUT CURRENT CAN SOURCE OR
SINK 200mA
ADJUSTABLE DUTY CYCLE
TTL COMPATIBLE
TEMPERATURE STABILITY OF 0.005%
PERoC
DESCRIPTION
The NE555 monolithic timing circuit is a highly stable
controller capableof producing accuratetime delays
or oscillation. In the time delay mode of operation,
the time is precisely controlled by one external resistor and capacitor.For a stableoperation as an oscillator, the free running frequency and the duty cycle are both accurately controlled with two external
resistors and one capacitor. The circuit may be triggered and reset on falling waveforms, and the output structure can source or sink up to 200mA. The
NE555 is available in plastic and ceramic minidip
package and in a 8-lead micropackage and in metal
can package version.
N
DIP8
(Plastic Package)
D
SO8
(Plastic Micropackage)
ORDER CODES
Part
Number
Package
Temperature
Range
N
D
NE555
0oC, 70oC
•
•
SA555
–40oC, 105oC
•
•
SE555
–55 C, 125 C
•
•
o
o
PIN CONNECTIONS (top view)
July 1998
1
8
2
7
3
6
4
5
1
2
3
4
5
6
7
8
- GND
- Trigger
- Output
- Reset
- Control voltage
- Threshold
- Discharge
- VCC
1/10
NE555/SA555/SE555
BLOCK DIAGRAM
VCC+
5kΩ
COMP
THRESHOLD
CONTROL VOLTAGE
DISCHARGE
R
FLIP-FLOP
Q
5kΩ
COMP
OUT
TRIGGER
S
INHIBIT/
RESET
5kΩ
S
RESET
S - 808 6
SCHEMATIC DIAGRAM
CONTROL
VOLTAGE
OUTPUT
THRESHOLD
COMPARATOR
5
VCC
R2
830Ω
R1
4.7kΩ
R12
6.8kΩ
R4 R8
1kΩ 5kΩ
R3
4.7kΩ
Q21
Q5
Q6
Q7
Q8
Q19
Q9
Q22
Q20
Ρ13
3.9kΩ
R11
5kΩ
THRESHOLD
Q2
Q23
Q3
R9
5kΩ
Q11 Q12
TRIGGER
2
D2
Q24
Q16
RES ET
DISCHARGE
R14
220Ω
Q13
Q10
4
3
D1
R17
4.7kΩ
Q4
Q1
Q18
R16
100Ω
R15
4.7kΩ
Q15
7
Q17
Q14
R5
10kΩ
R6
100kΩ
R7
100kΩ
R10
5kΩ
1
G ND
TRIGGER COMPARATOR
FLIP FLOP
ABSOLUTE MAXIMUM RATINGS
Symbol
Vcc
Toper
Tj
Tstg
2/10
Parameter
Value
Supply Voltage
Operating Free Air Temperature Range
Junction Temperature
Storage Temperature Range
18
for NE555
for SA555
for SE555
Unit
V
0 to 70
–40 to 105
–55 to 125
o
150
o
–65 to 150
o
C
C
C
NE555/SA555/SE555
OPERATING CONDITIONS
Symbol
VCC
Vth, Vtrig, Vcl, Vreset
Parameter
Supply Voltage
Maximum Input Voltage
SE555
NE555 - SA555
Unit
4.5 to 18
4.5 to 18
V
VCC
VCC
V
ELECTRICAL CHARACTERISTICS
T amb = +25oC, VCC = +5V to +15V (unless otherwise specified)
Symbol
ICC
VCL
Vth
Ith
Vtrig
Itrig
Parameter
Max.
3
10
2
Timing Error (monostable)
(RA = 2k to 100kΩ, C = 0.1µF)
Initial Accuracy - (note 2)
Drift with Temperature
Drift with Supply Voltage
0.5
30
0.05
Timing Error (astable)
(RA, RB = 1kΩ to 100kΩ, C = 0.1µF,
VCC = +15V)
Initial Accuracy - (note 2)
Drift with Temperature
Drift with Supply Voltage
1.5
90
0.15
Supply Current (RL ∞) (- note 1)
Low State
VCC = +5V
VCC = +15V
High State
VCC = 5V
Min.
Typ.
Max.
5
12
3
10
2
6
15
2
100
0.2
1
50
0.1
3
0.5
2.25
150
0.3
10
3.33
10.4
3.8
9
2.6
10
3.33
11
4
Threshold Voltage
VCC = +15V
VCC = +5V
9.4
2.7
10
3.33
10.6
4
8.8
2.4
10
3.33
11.2
4.2
0.1
0.25
0.1
0.25
5
1.67
5.2
1.9
5
1.67
5.6
2.2
0.5
0.9
0.5
2.0
0.7
1
0.7
1
V
V
Threshold Current - (note 3)
Reset Current
VOL
µA
V
4.8
1.45
Trigger Current (Vtrig = 0V)
Ireset
%
ppm/°C
%/V
%
ppm/°C
%/V
9.6
2.9
Trigger Voltage
VCC = +15V
VCC = +5V
Unit
mA
Control Voltage level
VCC = +15V
VCC = +5V
Reset Voltage - (note 4)
Notes :
NE555 - SA555
Typ.
Vreset
VOH
SE555
Min.
0.4
4.5
1.1
0.4
µA
V
mA
0.1
0.4
0.4
1
0.1
0.4
0.4
1.5
Low Level Output Voltage
VCC = +15V, IO(sink) = 10mA
IO(sink) = 50mA
IO(sink) = 100mA
IO(sink) = 200mA
VCC = +5V, IO(sink) = 8mA
IO(sink) = 5mA
0.1
0.4
2
2.5
0.1
0.05
0.15
0.5
2.2
0.1
0.4
2
2.5
0.3
0.25
0.25
0.75
2.5
High Level Output Voltage
VCC = +15V, IO(source) = 200mA
IO(source) = 100mA
VCC = +5V, IO(source) = 100mA
12.5
13.3
3.3
Vreset = +0.4V
Vreset = 0V
V
0.25
0.2
0.4
0.35
V
13
3
12.75
2.75
12.5
13.3
3.3
1. Supply current when output is high is typically 1mA less.
2. Tested at VCC = +5V and VCC = +15V.
3. This will determine the maximum value of RA + RB for +15V operation the max total is R = 20MΩ and for 5V operation
the max total R = 3.5MΩ.
3/10
NE555/SA555/SE555
ELECTRICAL CHARACTERISTICS (continued)
Symbol
Parameter
SE555
Min.
NE555 - SA555
Typ.
Max.
20
100
Min.
Typ.
Max.
20
100
Idis (off)
Discharge Pin Leakage Current
(output high) (Vdis = 10V)
Vdis(sat)
Discharge pin Saturation Voltage
(output low) - (note 5)
VCC = +15V, Idis = 15mA
VCC = +5V, Idis = 4.5mA
180
80
480
200
180
80
480
200
Output Rise Time
Output Fall Time
100
100
200
200
100
100
300
300
Turn off Time - (note 6) (Vreset = VCC)
0.5
tr
tf
toff
Notes :
Unit
nA
mV
0.5
ns
µs
5. No protection against excessive Pin 7 current is necessary, providing the package dissipation rating will not be exceeded.
6. Time mesaured from a positive going input pulse from 0 to 0.8x VCC into the threshold to the drop from high to low of the
output trigger is tied to treshold.
Figure 1 : Minimum Pulse Width Required for
Trigering
Figure 2 : Supply Current versus Supply Voltage
Figure 3 : Delay Time versus Temperature
Figure 4 : Low Output Voltage versus Output
Sink Current
4/10
NE555/SA555/SE555
Figure 5 : Low Output Voltage versus Output
Sink Current
Figure 6 : Low Output Voltage versus Output
Sink Current
Figure 7 : High Output Voltage Drop versus
Output
Figure 8 : Delay Time versus Supply Voltage
Figure 9 : Propagation Delay versus Voltage
Level of Trigger Value
5/10
NE555/SA555/SE555
APPLICATION INFORMATION
Figure 11
MONOSTABLE OPERATION
In the monostable mode, the timer functions as a
one-shot. Referring to figure 10 the external capacitor is initially held discharged by a transistor inside
the timer.
Figure 10
t = 0.1 ms / div
INPUT = 2.0V/div
OUTPUT VOLTAGE = 5.0V/div
VCC = 5 to 15V
Reset
R1
4
7
The circuit triggers on a negative-going input signal
when the level reaches 1/3 Vcc. Once triggered, the
circuit remains in this state until the set time has
elapsed, even if it is triggered again during this interval.The duration of the output HIGH stateis given
by t = 1.1 R1C1 and is easily determined by
figure 12.
Notice that since the charge rate and the threshold
level of the comparator are both directly proportional
to supply voltage, the timing interval is independent
of supply. Applying a negativepulse simultaneously
to the reset terminal (pin 4) and the trigger terminal
(pin 2) during the timing cycle discharges the external capacitor and causes the cycle to start over. The
timing cycle now starts on the positive edge of the
reset pulse. During the time the reset pulse in applied, the output is driven to its LOW state.
When a negativetrigger pulse is applied to pin 2, the
flip-flop is set, releasing the short circuit across the
external capacitor and driving the output HIGH. The
voltage across the capacitor increases exponentially with the time constantτ = R1C1. When the voltage across the capacitor equals 2/3 Vcc, the comparatorresets the flip-flop which then discharge the capacitor rapidly and drivers the output to its LOW
state.
Figure 11 shows the actual waveforms generatedin
this mode of operation.
When Reset is not used, it should be tied high to
avoid any possibly or false triggering.
6/10
Figure 12
C
(µF)
10
1.0
Ω
0.01 µF
R1 = 9.1kΩ, C1 = 0.01µF, RL = 1kΩ
0.1
0.01
0.001
10
µs
Ω
1
Control Voltage
CAPACITOR VOLTAGE = 2.0V/div
10
M
5
3
C1
Ω
10
0k
Ω
1M
Output
6
1k
Ω
NE555
10
k
2
R
1=
Trigger
8
100
µs
1.0
ms
10
ms
100
ms
10
s
(t d )
ASTABLE OPERATION
When the circuit is connected as shown in figure 13
(pin 2 and 6 connected)it triggers itself and free runs
as a multivibrator. The external capacitor charges
through R1 and R2 and discharges through R2 only.
Thus the duty cycle may be precisely set by the ratio
of these two resistors.
In the astable mode of operation, C1 charges and
discharges between 1/3 Vcc and 2/3 Vcc. As in the
triggeredmode, the chargeand discharge times and
therefore frequency are independent of the supply
voltage.
NE555/SA555/SE555
Figure 15 : Free Running Frequency versus R1,
R2 and C1
Figure 13
VCC = 5 to 15V
R1
4
Output
8
7
3
NE555
Control
Voltage
0.01 µF
R2
1
2
1.0
R1
+
0.1
6
5
C
(µF)
10
R2
1M
=
C1
0.01
Figure 14 shows actual waveforms generatedin this
mode of operation.
The charge time (output HIGH) is given by :
t1 = 0.693 (R1 + R2) C1
and the discharge time (output LOW) by :
t2 = 0.693 (R2) C1
Thus the total period T is given by :
T = t1 + t2 = 0.693 (R1 + 2R2) C1
The frequency ofoscillation is them :
1
1.44
f= =
T (R1 + 2R2) C1
and may be easily found by figure 15.
The duty cycle is given by :
R2
D=
R1 + 2R2
0.001
0.1
1
10
Ω
10
M
1k
Ω
10
kΩ
0k
Ω
Ω
10
100
1k
10k
f o (Hz)
PULSE WIDTH MODULATOR
When the timer is connected in the monostable
mode and triggered with a continuous pulse train,
the output pulse width can be modulated by a signal
applied to pin 5. Figure 16 shows the circuit.
Figure 16 : Pulse Width Modulator.
VCC
RA
8
4
Figure 14
Trigger
7
2
t = 0.5 ms / div
NE555
6
Modulation
Input
OUTPUT VOLTAGE = 5.0V/div
Output
3
5
C
1
CAPACITOR VOLTAGE = 1.0V/div
R1 = R2 = 4.8kΩ, C1= 0.1µF, RL = 1kΩ
7/10
NE555/SA555/SE555
LINEAR RAMP
When the pullup resistor, RA, in the monostable circuit is replaced by a constant current source, a linear
ramp is generated. Figure 17 shows a circuit configuration that will perform this function.
Figure 17.
VCC
RE
Thus the frequency of oscillation is f =
1
t1 + t2
Note that this circuit will not oscillate if RB is greater
8
4
Trigger
R1
50% DUTY CYCLE OSCILLATOR
For a 50% duty cycle the resistors RA and RE may
beconnected as in figure19. The time preriod for the
output high is the same as previous,
t1 = 0.693 RA C.
For the output low it is t2 =
 RB − 2RA 
[(RARB) ⁄ (RA + RB)] CLn 

 2RB − RA 
Figure 19 : 50% Duty Cycle Oscillator.
7
2
NE555
2N4250
or equiv.
VCC
6
VCC
C
Output
3
5
0.01µF
R2
RA
51kΩ
1
4
8
RB
7
2
22kΩ
NE55
Figure 18 shows waveforms generator by the linear
ramp.
The time interval is given by :
(2/3 VCC RE (R1+ R2) C
T=
VBE = 0.6V
R1 VCC − VBE (R1+ R2)
Figure 18 : Linear Ramp.
Out
6
5
3
1
0.01µF
C
0.01µF
than 1/2 RA because the junction of RA and RB cannot bring pin 2 down to 1/3 VCC and trigger the lower
comparator.
ADDITIONAL INFORMATION
Adequate power supply bypassing is necessary to
protect associated circuitry. Minimum recommended is 0.1µF in parallel with 1µF electrolytic.
VCC = 5V
Time = 20µs/DIV
R 1 = 47kΩ
R 2 = 100kΩ
R E = 2.7kΩ
C = 0.01µF
8/10
Top trace : input 3V/DIV
Middle trace : output 5V/DIV
Bottom trace : output 5V/DIV
Bottom trace : capacitor voltage
1V/DIV
NE555/SA555/SE555
PM-DIP8.EPS
PACKAGE MECHANICAL DATA
8 PINS - PLASTIC DIP
A
a1
B
b
b1
D
E
e
e3
e4
F
i
L
Z
Min.
Millimeters
Typ.
3.32
0.51
1.15
0.356
0.204
Max.
1.65
0.55
0.304
10.92
9.75
7.95
Min.
0.020
0.045
0.014
0.008
Max.
0.065
0.022
0.012
0.430
0.384
0.313
2.54
7.62
7.62
3.18
Inches
Typ.
0.131
0.100
0.300
0.300
6.6
5.08
3.81
1.52
0.125
0260
0.200
0.150
0.060
DIP8.TBL
Dimensions
9/10
NE555/SA555/SE555
PM-SO8.EPS
PACKAGE MECHANICAL DATA
8 PINS - PLASTIC MICROPACKAGE (SO)
A
a1
a2
a3
b
b1
C
c1
D
E
e
e3
F
L
M
S
Min.
Millimeters
Typ.
0.1
0.65
0.35
0.19
0.25
Max.
1.75
0.25
1.65
0.85
0.48
0.25
0.5
Min.
Inches
Typ.
0.026
0.014
0.007
0.010
Max.
0.069
0.010
0.065
0.033
0.019
0.010
0.020
0.189
0.228
0.197
0.244
0.004
o
45 (typ.)
4.8
5.8
5.0
6.2
1.27
3.81
3.8
0.4
0.050
0.150
4.0
1.27
0.6
0.150
0.016
0.157
0.050
0.024
o
8 (max.)
SO8.TBL
Dimensions
 1998 STMicroelectronics – Printed in Italy – All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco
The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdo m - U.S.A.
10/10
ORDER CODE :
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this pub lication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support
devices or systems without express written approval of STMicroelectronics.
 The ST log o is a trademark of STMicroelectronics
This datasheet has been download from:
www.datasheetcatalog.com
Datasheets for electronics components.
19-4323; Rev 11; 2/03
+5V-Powered, Multichannel RS-232
Drivers/Receivers
____________________________Features
Superior to Bipolar
♦ Operate from Single +5V Power Supply
(+5V and +12V—MAX231/MAX239)
♦ Low-Power Receive Mode in Shutdown
(MAX223/MAX242)
♦ Meet All EIA/TIA-232E and V.28 Specifications
♦ Multiple Drivers and Receivers
♦ 3-State Driver and Receiver Outputs
♦ Open-Line Detection (MAX243)
Ordering Information
________________________Applications
PART
MAX220CPE
MAX220CSE
MAX220CWE
MAX220C/D
MAX220EPE
MAX220ESE
MAX220EWE
MAX220EJE
MAX220MJE
Portable Computers
Low-Power Modems
Interface Translation
Battery-Powered RS-232 Systems
Multidrop RS-232 Networks
TEMP RANGE
0°C to +70°C
0°C to +70°C
0°C to +70°C
0°C to +70°C
-40°C to +85°C
-40°C to +85°C
-40°C to +85°C
-40°C to +85°C
-55°C to +125°C
PIN-PACKAGE
16 Plastic DIP
16 Narrow SO
16 Wide SO
Dice*
16 Plastic DIP
16 Narrow SO
16 Wide SO
16 CERDIP
16 CERDIP
Ordering Information continued at end of data sheet.
*Contact factory for dice specifications.
Selection Table
Part
Number
MAX220
MAX222
MAX223 (MAX213)
MAX225
MAX230 (MAX200)
MAX231 (MAX201)
MAX232 (MAX202)
MAX232A
MAX233 (MAX203)
MAX233A
MAX234 (MAX204)
MAX235 (MAX205)
MAX236 (MAX206)
MAX237 (MAX207)
MAX238 (MAX208)
MAX239 (MAX209)
MAX240
MAX241 (MAX211)
MAX242
MAX243
MAX244
MAX245
MAX246
MAX247
MAX248
MAX249
Power
Supply
(V)
+5
+5
+5
+5
+5
+5 and
+7.5 to +13.2
+5
+5
+5
+5
+5
+5
+5
+5
+5
+5 and
+7.5 to +13.2
+5
+5
+5
+5
+5
+5
+5
+5
+5
+5
No. of
RS-232
Drivers/Rx
2/2
2/2
4/5
5/5
5/0
2/2
No. of
Ext. Caps
4
4
4
0
4
2
Nominal
Cap. Value
(µF)
0.1
0.1
1.0 (0.1)
—
1.0 (0.1)
1.0 (0.1)
SHDN
& ThreeState
No
Yes
Yes
Yes
Yes
No
Rx
Active in
SHDN
—
—
✔
✔
—
—
Data Rate
(kbps)
120
200
120
120
120
120
2/2
2/2
2/2
2/2
4/0
5/5
4/3
5/3
4/4
3/5
4
4
0
0
4
0
4
4
4
2
1.0 (0.1)
0.1
—
—
1.0 (0.1)
—
1.0 (0.1)
1.0 (0.1)
1.0 (0.1)
1.0 (0.1)
No
No
No
No
No
Yes
Yes
No
No
No
—
—
—
—
—
—
—
—
—
—
120 (64)
200
120
200
120
120
120
120
120
120
5/5
4/5
2/2
2/2
8/10
8/10
8/10
8/9
8/8
6/10
4
4
4
4
4
0
0
0
4
4
1.0
1.0 (0.1)
0.1
0.1
1.0
—
—
—
1.0
1.0
Yes
Yes
Yes
No
No
Yes
Yes
Yes
Yes
Yes
—
—
✔
—
—
✔
✔
✔
✔
✔
120
120
200
200
120
120
120
120
120
120
Features
Ultra-low-power, industry-standard pinout
Low-power shutdown
MAX241 and receivers active in shutdown
Available in SO
5 drivers with shutdown
Standard +5/+12V or battery supplies;
same functions as MAX232
Industry standard
Higher slew rate, small caps
No external caps
No external caps, high slew rate
Replaces 1488
No external caps
Shutdown, three state
Complements IBM PC serial port
Replaces 1488 and 1489
Standard +5/+12V or battery supplies;
single-package solution for IBM PC serial port
DIP or flatpack package
Complete IBM PC serial port
Separate shutdown and enable
Open-line detection simplifies cabling
High slew rate
High slew rate, int. caps, two shutdown modes
High slew rate, int. caps, three shutdown modes
High slew rate, int. caps, nine operating modes
High slew rate, selective half-chip enables
Available in quad flatpack package
________________________________________________________________ Maxim Integrated Products
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
1
MAX220–MAX249
General Description
The MAX220–MAX249 family of line drivers/receivers is
intended for all EIA/TIA-232E and V.28/V.24 communications interfaces, particularly applications where ±12V is
not available.
These parts are especially useful in battery-powered systems, since their low-power shutdown mode reduces
power dissipation to less than 5µW. The MAX225,
MAX233, MAX235, and MAX245/MAX246/MAX247 use
no external components and are recommended for applications where printed circuit board space is critical.
MAX220–MAX249
+5V-Powered, Multichannel RS-232
Drivers/Receivers
ABSOLUTE MAXIMUM RATINGS—MAX220/222/232A/233A/242/243
Supply Voltage (VCC) ...............................................-0.3V to +6V
Input Voltages
TIN..............................................................-0.3V to (VCC - 0.3V)
RIN (Except MAX220) ........................................................±30V
RIN (MAX220).....................................................................±25V
TOUT (Except MAX220) (Note 1) .......................................±15V
TOUT (MAX220)...............................................................±13.2V
Output Voltages
TOUT ...................................................................................±15V
ROUT .........................................................-0.3V to (VCC + 0.3V)
Driver/Receiver Output Short Circuited to GND.........Continuous
Continuous Power Dissipation (TA = +70°C)
16-Pin Plastic DIP (derate 10.53mW/°C above +70°C)....842mW
18-Pin Plastic DIP (derate 11.11mW/°C above +70°C)....889mW
20-Pin Plastic DIP (derate 8.00mW/°C above +70°C) ..440mW
16-Pin Narrow SO (derate 8.70mW/°C above +70°C) ...696mW
16-Pin Wide SO (derate 9.52mW/°C above +70°C)......762mW
18-Pin Wide SO (derate 9.52mW/°C above +70°C)......762mW
20-Pin Wide SO (derate 10.00mW/°C above +70°C)....800mW
20-Pin SSOP (derate 8.00mW/°C above +70°C) ..........640mW
16-Pin CERDIP (derate 10.00mW/°C above +70°C).....800mW
18-Pin CERDIP (derate 10.53mW/°C above +70°C).....842mW
Operating Temperature Ranges
MAX2_ _AC_ _, MAX2_ _C_ _ .............................0°C to +70°C
MAX2_ _AE_ _, MAX2_ _E_ _ ..........................-40°C to +85°C
MAX2_ _AM_ _, MAX2_ _M_ _ .......................-55°C to +125°C
Storage Temperature Range .............................-65°C to +160°C
Lead Temperature (soldering, 10s) .................................+300°C
Note 1: Input voltage measured with TOUT in high-impedance state, SHDN or VCC = 0V.
Note 2: For the MAX220, V+ and V- can have a maximum magnitude of 7V, but their absolute difference cannot exceed 13V.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS—MAX220/222/232A/233A/242/243
(VCC = +5V ±10%, C1–C4 = 0.1µF‚ MAX220, C1 = 0.047µF, C2–C4 = 0.33µF, TA = TMIN to TMAX‚ unless otherwise noted.)
PARAMETER
CONDITIONS
MIN
TYP
MAX
UNITS
0.8
V
RS-232 TRANSMITTERS
Output Voltage Swing
All transmitter outputs loaded with 3kΩ to GND
±5
Input Logic Threshold Low
Input Logic Threshold High
Logic Pull-Up/lnput Current
Output Leakage Current
±8
1.4
All devices except MAX220
MAX220: VCC = 5.0V
2
V
1.4
V
2.4
All except MAX220, normal operation
5
40
SHDN = 0V, MAX222/242, shutdown, MAX220
±0.01
±1
VCC = 5.5V, SHDN = 0V, VOUT = ±15V, MAX222/242
±0.01
±10
VCC = SHDN = 0V, VOUT = ±15V
±0.01
±10
200
116
Data Rate
µA
µA
kbps
Transmitter Output Resistance
VCC = V+ = V- = 0V, VOUT = ±2V
300
10M
Ω
Output Short-Circuit Current
VOUT = 0V
±7
±22
mA
RS-232 RECEIVERS
RS-232 Input Voltage Operating Range
±30
RS-232 Input Threshold Low
VCC = 5V
RS-232 Input Threshold High
VCC = 5V
RS-232 Input Hysteresis
All except MAX243 R2IN
0.8
MAX243 R2IN (Note 2)
-3
1.8
2.4
MAX243 R2IN (Note 2)
-0.5
-0.1
0.5
1
RS-232 Input Resistance
2
1
3
TTL/CMOS Output Voltage High
IOUT = -1.0mA
TTL/CMOS Output Short-Circuit Current
0.2
MAX243
IOUT = 3.2mA
V
All except MAX243 R2IN
All except MAX243, VCC = 5V, no hysteresis in shdn.
TTL/CMOS Output Voltage Low
1.3
V
V
V
5
7
kΩ
0.2
0.4
V
3.5
VCC - 0.2
Sourcing VOUT = GND
-2
-10
Shrinking VOUT = VCC
10
30
_______________________________________________________________________________________
V
mA
+5V-Powered, Multichannel RS-232
Drivers/Receivers
PARAMETER
CONDITIONS
TTL/CMOS Output Leakage Current
SHDN = VCC or EN = VCC (SHDN = 0V for MAX222),
0V ≤ VOUT ≤ VCC
EN Input Threshold Low
MAX242
EN Input Threshold High
MAX242
2.0
Operating Supply Voltage
3kΩ load
both inputs
MAX220
UNITS
±0.05
±10
µA
1.4
0.8
V
1.4
5.5
MAX222/232A/233A/242/243
4
10
MAX220
12
MAX222/232A/233A/242/243
15
TA = +25°C
0.1
10
TA = 0°C to +70°C
2
50
TA = -40°C to +85°C
2
50
TA = -55°C to +125°C
35
100
SHDN Input Leakage Current
MAX222/242
SHDN Threshold Low
MAX222/242
SHDN Threshold High
MAX222/242
CL = 50pF to 2500pF,
MAX222/232A/233A/242/243
RL = 3kΩ to 7kΩ,
VCC = 5V, TA = +25°C,
measured from +3V MAX220
to -3V or -3V to +3V
MAX222/232A/233A/242/243
tPHLT
MAX220
tPLHT
V
2
MAX222/242
Transmitter Propagation Delay
TLL to RS-232 (Normal Operation),
Figure 1
MAX
0.5
Shutdown Supply Current
Transition Slew Rate
TYP
4.5
No load
VCC Supply Current (SHDN = VCC),
Figures 5, 6, 11, 19
MIN
1.4
MAX222/232A/233A/242/243
mA
µA
±1
µA
0.8
V
2.0
1.4
V
6
12
30
1.5
3
30
1.3
3.5
V/µs
4
10
1.5
3.5
µs
5
10
MAX222/232A/233A/242/243
0.5
1
MAX220
0.6
3
MAX222/232A/233A/242/243
0.6
1
MAX220
0.8
3
tPHLS
MAX242
0.5
10
tPLHS
MAX242
2.5
10
Receiver-Output Enable Time, Figure 3 tER
MAX242
125
500
ns
Receiver-Output Disable Time, Figure 3 tDR
MAX242
160
500
ns
Transmitter-Output Enable Time
(SHDN Goes High), Figure 4
tET
MAX222/242, 0.1µF caps
(includes charge-pump start-up)
250
µs
Transmitter-Output Disable Time
(SHDN Goes Low), Figure 4
tDT
MAX222/242, 0.1µF caps
600
ns
Transmitter + to - Propagation
Delay Difference (Normal Operation)
tPHLT - tPLHT
MAX222/232A/233A/242/243
300
MAX220
2000
Receiver + to - Propagation
Delay Difference (Normal Operation)
tPHLR - tPLHR
MAX222/232A/233A/242/243
100
MAX220
225
Receiver Propagation Delay
RS-232 to TLL (Normal Operation),
Figure 2
Receiver Propagation Delay
RS-232 to TLL (Shutdown), Figure 2
tPHLR
tPLHR
MAX220
V
µs
µs
ns
ns
Note 3: MAX243 R2OUT is guaranteed to be low when R2IN is ≥ 0V or is floating.
_______________________________________________________________________________________
3
MAX220–MAX249
ELECTRICAL CHARACTERISTICS—MAX220/222/232A/233A/242/243 (continued)
(VCC = +5V ±10%, C1–C4 = 0.1µF‚ MAX220, C1 = 0.047µF, C2–C4 = 0.33µF, TA = TMIN to TMAX‚ unless otherwise noted.)
__________________________________________Typical Operating Characteristics
MAX220/MAX222/MAX232A/MAX233A/MAX242/MAX243
AVAILABLE OUTPUT CURRENT
vs. DATA RATE
VCC = ±5V
NO LOAD ON
TRANSMITTER OUTPUTS
(EXCEPT MAX220, MAX233A)
2
0
0.1µF
V- LOADED, NO LOAD ON V+
-2
1µF
0.1µF
-4
ALL CAPS
1µF
9
VCC = +5.25V
8
ALL CAPS
0.1µF
7
+10V
1µF CAPS
V+
VCC = +4.75V
+5V
+5V
0V
1µF CAPS
6
V+ LOADED, NO LOAD ON V0
5
10
15
LOAD CURRENT (mA)
4
0.1µF CAPS
5
-10
20
25
0.1µF CAPS
SHDN
0V
-6
-8
V+
V-
4
V-
-10V
0
10
20
30
40
50
60
500µs/div
DATA RATE (kbits/sec)
_______________________________________________________________________________________
MAX220-03
EITHER V+ OR V- LOADED
4
10
OUTPUT CURRENT (mA)
6
OUTPUT LOAD CURRENT
FLOWS FROM V+ TO V-
V+, V- VOLTAGE (V)
1µF
8
11
MAX220-01
10
MAX222/MAX242
ON-TIME EXITING SHUTDOWN
MAX220-02
OUTPUT VOLTAGE vs. LOAD CURRENT
OUTPUT VOLTAGE (V)
MAX220–MAX249
+5V-Powered, Multichannel RS-232
Drivers/Receivers
+5V-Powered, Multichannel RS-232
Drivers/Receivers
20-Pin Wide SO (derate 10 00mW/°C above +70°C).......800mW
24-Pin Wide SO (derate 11.76mW/°C above +70°C).......941mW
28-Pin Wide SO (derate 12.50mW/°C above +70°C) .............1W
44-Pin Plastic FP (derate 11.11mW/°C above +70°C) .....889mW
14-Pin CERDIP (derate 9.09mW/°C above +70°C) ..........727mW
16-Pin CERDIP (derate 10.00mW/°C above +70°C) ........800mW
20-Pin CERDIP (derate 11.11mW/°C above +70°C) ........889mW
24-Pin Narrow CERDIP
(derate 12.50mW/°C above +70°C) ..............1W
24-Pin Sidebraze (derate 20.0mW/°C above +70°C)..........1.6W
28-Pin SSOP (derate 9.52mW/°C above +70°C).............762mW
Operating Temperature Ranges
MAX2 _ _ C _ _......................................................0°C to +70°C
MAX2 _ _ E _ _ ...................................................-40°C to +85°C
MAX2 _ _ M _ _ ...............................................-55°C to +125°C
Storage Temperature Range .............................-65°C to +160°C
Lead Temperature (soldering, 10s) .................................+300°C
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS—MAX223/MAX230–MAX241
(MAX223/230/232/234/236/237/238/240/241, VCC = +5V ±10; MAX233/MAX235, VCC = 5V ±5%‚ C1–C4 = 1.0µF; MAX231/MAX239,
VCC = 5V ±10%; V+ = 7.5V to 13.2V; TA = TMIN to TMAX; unless otherwise noted.)
PARAMETER
Output Voltage Swing
CONDITIONS
All transmitter outputs loaded with 3kΩ to ground
MIN
TYP
±5.0
±7.3
MAX232/233
VCC Power-Supply Current
No load,
TA = +25°C
V+ Power-Supply Current
MAX223/230/234–238/240/241
10
7
15
0.4
1
MAX231
1.8
5
MAX239
5
15
MAX223
15
50
MAX230/235/236/240/241
1
10
TA = +25°C
Input Logic Threshold Low
TIN; EN, SHDN (MAX233); EN, SHDN (MAX230/235–241)
0.8
TIN
2.0
Input Logic Threshold High
EN, SHDN (MAX223);
EN, SHDN (MAX230/235/236/240/241)
2.4
Logic Pull-Up Current
TIN = 0V
mA
mA
µA
V
V
1.5
-30
UNITS
V
5
MAX231/239
Shutdown Supply Current
Receiver Input Voltage
Operating Range
MAX
200
µA
30
V
_______________________________________________________________________________________
5
MAX220–MAX249
ABSOLUTE MAXIMUM RATINGS—MAX223/MAX230–MAX241
VCC ...........................................................................-0.3V to +6V
V+ ................................................................(VCC - 0.3V) to +14V
V- ............................................................................+0.3V to -14V
Input Voltages
TIN ............................................................-0.3V to (VCC + 0.3V)
RIN......................................................................................±30V
Output Voltages
TOUT ...................................................(V+ + 0.3V) to (V- - 0.3V)
ROUT .........................................................-0.3V to (VCC + 0.3V)
Short-Circuit Duration, TOUT ......................................Continuous
Continuous Power Dissipation (TA = +70°C)
14-Pin Plastic DIP (derate 10.00mW/°C above +70°C)....800mW
16-Pin Plastic DIP (derate 10.53mW/°C above +70°C)....842mW
20-Pin Plastic DIP (derate 11.11mW/°C above +70°C)....889mW
24-Pin Narrow Plastic DIP
(derate 13.33mW/°C above +70°C) ..........1.07W
24-Pin Plastic DIP (derate 9.09mW/°C above +70°C)......500mW
16-Pin Wide SO (derate 9.52mW/°C above +70°C).........762mW
MAX220–MAX249
+5V-Powered, Multichannel RS-232
Drivers/Receivers
ELECTRICAL CHARACTERISTICS—MAX223/MAX230–MAX241 (continued)
(MAX223/230/232/234/236/237/238/240/241, VCC = +5V ±10; MAX233/MAX235, VCC = 5V ±5%‚ C1–C4 = 1.0µF; MAX231/MAX239,
VCC = 5V ±10%; V+ = 7.5V to 13.2V; TA = TMIN to TMAX; unless otherwise noted.)
PARAMETER
RS-232 Input Threshold Low
RS-232 Input Threshold High
CONDITIONS
TA = +25°C,
VCC = 5V
TA = +25°C,
VCC = 5V
MIN
TYP
Normal operation
SHDN = 5V (MAX223)
SHDN = 0V (MAX235/236/240/241)
0.8
1.2
Shutdown (MAX223)
SHDN = 0V,
EN = 5V (R4IN, R5IN)
0.6
1.5
Normal operation
SHDN = 5V (MAX223)
SHDN = 0V (MAX235/236/240/241)
1.7
Shutdown (MAX223)
SHDN = 0V,
EN = 5V (R4IN‚ R5IN)
1.5
2.4
0.2
0.5
1.0
V
3
5
7
kΩ
0.4
V
3.5
VCC - 0.4
RS-232 Input Resistance
TA = +25°C, VCC = 5V
TTL/CMOS Output Voltage Low
IOUT = 1.6mA (MAX231/232/233, IOUT = 3.2mA)
TTL/CMOS Output Voltage High
IOUT = -1mA
TTL/CMOS Output Leakage Current
0V ≤ ROUT ≤ VCC; EN = 0V (MAX223);
EN = VCC (MAX235–241 )
Receiver Output Enable Time
Normal
operation
MAX223
600
MAX235/236/239/240/241
400
Receiver Output Disable Time
Normal
operation
MAX223
900
MAX235/236/239/240/241
250
Propagation Delay
Normal operation
RS-232 IN to
TTL/CMOS OUT, SHDN = 0V
CL = 150pF
(MAX223)
Transmitter Output Short-Circuit
Current
6
0.05
V
±10
ns
0.5
10
4
40
tPLHS
6
40
5.1
30
3
µA
ns
tPHLS
MAX223/MAX230/MAX234–241, TA = +25°C, VCC = 5V,
RL = 3kΩ to 7kΩ‚ CL = 50pF to 2500pF, measured from
+3V to -3V or -3V to +3V
µs
V/µs
MAX231/MAX232/MAX233, TA = +25°C, VCC = 5V,
RL = 3kΩ to 7kΩ, CL = 50pF to 2500pF, measured from
+3V to -3V or -3V to +3V
VCC = V+ = V- = 0V, VOUT = ±2V
2.4
V
VCC = 5V, no hysteresis in shutdown
Transmitter Output Resistance
UNITS
V
RS-232 Input Hysteresis
Transition Region Slew Rate
MAX
4
300
30
Ω
±10
_______________________________________________________________________________________
mA
mA
+5V-Powered, Multichannel RS-232
Drivers/Receivers
TRANSMITTER OUTPUT VOLTAGE (VOH)
vs. LOAD CAPACITANCE AT
DIFFERENT DATA RATES
2 TRANSMITTERS
LOADED
7.2
7.0
6.5
4.5
6.6
TA = +25°C
VCC = +5V
3 TRANSMITTERS LOADED
RL = 3kΩ
C1–C4 = 1µF
6.4
6.2
6.0
0
500
1000
1500
8.0
7.0
3 TRANSMITTERS
LOADED
4 TRANSMITTERS
LOADED
6.0
5.0
4.0
0
2500
2000
500
1000
1500
2000
2500
LOAD CAPACITANCE (pF)
TRANSMITTER OUTPUT
VOLTAGE (VOL) vs. VCC
TRANSMITTER OUTPUT VOLTAGE (VOL)
vs. LOAD CAPACITANCE AT
DIFFERENT DATA RATES
TRANSMITTER OUTPUT VOLTAGE (V+, V-)
vs. LOAD CURRENT
TA = +25°C
VCC = +5V
3 TRANSMITTERS LOADED
RL = 3kΩ
C1–C4 = 1µF
-6.2
-6.4
VOL (V)
-6.6
-7.5
1 TRANSMITTER
LOADED
2 TRANSMITTERS
LOADED
10
8
6
-7.0
2
0
-2
-6
-7.4
-8
5.0
VCC (V)
5.5
ALL TRANSMITTERS UNLOADED
-10
-7.6
-9.0
V+ LOADED,
NO LOAD
ON V-
-4
-7.2
3 TRANSMITTERS
LOADED
TA = +25°C
VCC = +5V
C1–C4 = 1µF
V- LOADED,
V+ AND VNO LOAD
EQUALLY
ON V+
LOADED
4
160kbits/sec
80kbits/sec
20Kkbits/sec
-6.8
MAX220-09
-6.0
MAX220-08
TA = +25°C
C1–C4 = 1µF
TRANSMITTER
LOADS =
3kΩ || 2500pF
V+, V- (V)
-7.0
4.5
2 TRANSMITTERS
LOADED
9.0
LOAD CAPACITANCE (pF)
4 TRANSMITTERS
LOADED
-8.5
SLEW RATE (V/µs)
160kbits/sec
80kbits/sec
20kbits/sec
VCC (V)
-6.5
-8.0
TA = +25°C
VCC = +5V
LOADED, RL = 3kΩ
C1–C4 = 1µF
10.0
6.8
5.5
5.0
-6.0
VOL (V)
VOH (V)
3 TRANSMITTERS
LOADED
TA = +25°C
C1–C4 = 1µF
TRANSMITTER
4 TRANSMITTERS LOADS =
3kΩ || 2500pF
LOADED
7.5
1 TRANSMITTER LOADED
11.0
7.0
1 TRANSMITTER
LOADED
MAX220-07
VOH (V)
8.0
12.0
MAX220-05
7.4
MAX220-04
8.5
TRANSMITTER SLEW RATE
vs. LOAD CAPACITANCE
MAX220-06
TRANSMITTER OUTPUT
VOLTAGE (VOH) vs. VCC
0
500
1000
1500
2000
0
2500
5
10 15 20 25 30 35 40 45 50
CURRENT (mA)
LOAD CAPACITANCE (pF)
V+, V- WHEN EXITING SHUTDOWN
(1µF CAPACITORS)
MAX220-13
V+
O
V-
SHDN*
500ms/div
*SHUTDOWN POLARITY IS REVERSED
FOR NON MAX241 PARTS
_______________________________________________________________________________________
7
MAX220–MAX249
__________________________________________Typical Operating Characteristics
MAX223/MAX230–MAX241
MAX220–MAX249
+5V-Powered, Multichannel RS-232
Drivers/Receivers
ABSOLUTE MAXIMUM RATINGS—MAX225/MAX244–MAX249
Supply Voltage (VCC) ...............................................-0.3V to +6V
Input Voltages
TIN‚ ENA, ENB, ENR, ENT, ENRA,
ENRB, ENTA, ENTB..................................-0.3V to (VCC + 0.3V)
RIN .....................................................................................±25V
TOUT (Note 3).....................................................................±15V
ROUT ........................................................-0.3V to (VCC + 0.3V)
Short Circuit (one output at a time)
TOUT to GND ............................................................Continuous
ROUT to GND............................................................Continuous
Continuous Power Dissipation (TA = +70°C)
28-Pin Wide SO (derate 12.50mW/°C above +70°C) .............1W
40-Pin Plastic DIP (derate 11.11mW/°C above +70°C) ...611mW
44-Pin PLCC (derate 13.33mW/°C above +70°C) ...........1.07W
Operating Temperature Ranges
MAX225C_ _, MAX24_C_ _ ..................................0°C to +70°C
MAX225E_ _, MAX24_E_ _ ...............................-40°C to +85°C
Storage Temperature Range .............................-65°C to +160°C
Lead Temperature (soldering,10s) ..................................+300°C
Note 4: Input voltage measured with transmitter output in a high-impedance state, shutdown, or VCC = 0V.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS—MAX225/MAX244–MAX249
(MAX225, VCC = 5.0V ±5%; MAX244–MAX249, VCC = +5.0V ±10%, external capacitors C1–C4 = 1µF; TA = TMIN to TMAX; unless otherwise noted.)
PARAMETER
CONDITIONS
MIN
TYP
MAX
UNITS
1.4
0.8
V
2
1.4
RS-232 TRANSMITTERS
Input Logic Threshold Low
Input Logic Threshold High
Normal operation
Logic Pull-Up/lnput Current
Tables 1a–1d
Data Rate
Tables 1a–1d, normal operation
Output Voltage Swing
All transmitter outputs loaded with 3kΩ to GND
Output Leakage Current (Shutdown)
Tables 1a–1d
Shutdown
±5
V
10
50
±0.01
±1
120
64
±7.5
µA
kbps
V
ENA, ENB, ENT, ENTA, ENTB =
VCC, VOUT = ±15V
±0.01
±25
VCC = 0V,
VOUT = ±15V
±0.01
±25
µA
Transmitter Output Resistance
VCC = V+ = V- = 0V, VOUT = ±2V (Note 4)
300
10M
Ω
Output Short-Circuit Current
VOUT = 0V
±7
±30
mA
RS-232 RECEIVERS
RS-232 Input Voltage Operating Range
±25
RS-232 Input Threshold Low
VCC = 5V
RS-232 Input Threshold High
VCC = 5V
RS-232 Input Hysteresis
VCC = 5V
RS-232 Input Resistance
1.3
2.4
0.2
0.5
1.0
V
3
5
7
kΩ
0.2
0.4
V
IOUT = 3.2mA
TTL/CMOS Output Voltage High
IOUT = -1.0mA
3.5
VCC - 0.2
Sourcing VOUT = GND
-2
-10
Shrinking VOUT = VCC
10
30
TTL/CMOS Output Leakage Current
Normal operation, outputs disabled,
Tables 1a–1d, 0V ≤ VOUT ≤ VCC, ENR_ = VCC
V
1.8
TTL/CMOS Output Voltage Low
TTL/CMOS Output Short-Circuit Current
8
0.8
V
±0.05
_______________________________________________________________________________________
V
V
mA
±0.10
µA
+5V-Powered, Multichannel RS-232
Drivers/Receivers
(MAX225, VCC = 5.0V ±5%; MAX244–MAX249, VCC = +5.0V ±10%, external capacitors C1–C4 = 1µF; TA = TMIN to TMAX; unless otherwise noted.)
PARAMETER
CONDITIONS
MIN
TYP
MAX
UNITS
POWER SUPPLY AND CONTROL LOGIC
Operating Supply Voltage
VCC Supply Current
(Normal Operation)
Shutdown Supply Current
No load
3kΩ loads on
all outputs
MAX225
4.75
5.25
MAX244–MAX249
4.5
5.5
MAX225
10
20
MAX244–MAX249
11
30
MAX225
40
MAX244–MAX249
57
TA = +25°C
8
TA = TMIN to TMAX
50
Leakage current
Control Input
25
±1
Threshold low
1.4
Threshold high
0.8
2.4
1.4
5
10
30
V
mA
µA
µA
V
AC CHARACTERISTICS
Transition Slew Rate
CL = 50pF to 2500pF, RL = 3kΩ to 7kΩ, VCC = 5V,
TA = +25°C, measured from +3V to -3V or -3V to +3V
V/µs
Transmitter Propagation Delay
TLL to RS-232 (Normal Operation),
Figure 1
tPHLT
1.3
3.5
tPLHT
1.5
3.5
Receiver Propagation Delay
TLL to RS-232 (Normal Operation),
Figure 2
tPHLR
0.6
1.5
tPLHR
0.6
1.5
Receiver Propagation Delay
TLL to RS-232 (Low-Power Mode),
Figure 2
tPHLS
0.6
10
tPLHS
3.0
10
Transmitter + to - Propagation
Delay Difference (Normal Operation)
tPHLT - tPLHT
350
ns
Receiver + to - Propagation
Delay Difference (Normal Operation)
tPHLR - tPLHR
350
ns
µs
µs
µs
Receiver-Output Enable Time, Figure 3 tER
100
500
ns
Receiver-Output Disable Time, Figure 3 tDR
100
500
ns
Transmitter Enable Time
Transmitter Disable Time, Figure 4
tET
tDT
MAX246–MAX249
(excludes charge-pump startup)
5
µs
MAX225/MAX245–MAX249
(includes charge-pump startup)
10
ms
100
ns
Note 5: The 300Ω minimum specification complies with EIA/TIA-232E, but the actual resistance when in shutdown mode or VCC =
0V is 10MΩ as is implied by the leakage specification.
_______________________________________________________________________________________
9
MAX220–MAX249
ELECTRICAL CHARACTERISTICS—MAX225/MAX244–MAX249 (continued)
__________________________________________Typical Operating Characteristics
MAX225/MAX244–MAX249
8
V+ AND V- LOADED
EXTERNAL POWER SUPPLY
1µF CAPACITORS
12
10
40kb/s DATA RATE
8 TRANSMITTERS
LOADED WITH 3kΩ
8
6
4
VCC = 5V
EXTERNAL CHARGE PUMP
1µF CAPACITORS
8 TRANSMITTERS
DRIVING 5kΩ AND
2000pF AT 20kbits/sec
2
0
-2
EITHER V+ OR
V- LOADED
2
3
LOAD CAPACITANCE (nF)
4
5
40kb/sec
7.0
60kb/sec
6.0
V+ AND V- LOADED
100kb/sec
200kb/sec
5.5
-8
1
20kb/sec
7.5
V- LOADED
V+ LOADED
-10
0
8.0
6.5
-4
-6
2
VCC = 5V WITH ALL TRANSMITTERS DRIVEN
LOADED WITH 5kΩ
10kb/sec
8.5
V+, V (V)
OUTPUT VOLTAGE (V)
6
14
9.0
MAX220-11
VCC = 5V
4
10
10
MAX220-10
18
16
TRANSMITTER OUTPUT VOLTAGE (V+, V-)
vs. LOAD CAPACITANCE AT
DIFFERENT DATA RATES
OUTPUT VOLTAGE
vs. LOAD CURRENT FOR V+ AND V-
MAX220-12
TRANSMITTER SLEW RATE
vs. LOAD CAPACITANCE
TRANSMITTER SLEW RATE (V/µs)
MAX220–MAX249
+5V-Powered, Multichannel RS-232
Drivers/Receivers
0
5
10
15
20
25
LOAD CURRENT (mA)
30
ALL CAPACITIORS 1µF
5.0
35
0
1
2
3
LOAD CAPACITANCE (nF)
______________________________________________________________________________________
4
5
+5V-Powered, Multichannel RS-232
Drivers/Receivers
MAX220–MAX249
+3V
0V*
+3V
50%
50%
50%
50%
INPUT
INPUT
0V
OUTPUT
V+
0V
V-
OUTPUT
VCC
GND
tPLHR
tPLHS
tPHLR
tPHLS
tPHLT
tPLHT
*EXCEPT FOR R2 ON THE MAX243
WHERE -3V IS USED.
Figure 1. Transmitter Propagation-Delay Timing
Figure 2. Receiver Propagation-Delay Timing
EN
RX OUT
RX IN
1kΩ
RX
VCC - 2V
SHDN
+3V
a) TEST CIRCUIT
0V
150pF
EN INPUT
OUTPUT DISABLE TIME (tDT)
+3V
0V
V+
+5V
EN
OUTPUT ENABLE TIME (tER)
0V
-5V
+3.5V
V-
RECEIVER
OUTPUTS
+0.8V
a) TIMING DIAGRAM
b) ENABLE TIMING
+3V
EN INPUT
EN
0V
1 OR 0
TX
OUTPUT DISABLE TIME (tDR)
VOH
RECEIVER
OUTPUTS
VOL
3kΩ
50pF
VOH - 0.5V
VCC - 2V
VOL + 0.5V
b) TEST CIRCUIT
c) DISABLE TIMING
Figure 3. Receiver-Output Enable and Disable Timing
Figure 4. Transmitter-Output Disable Timing
______________________________________________________________________________________
11
MAX220–MAX249
+5V-Powered, Multichannel RS-232
Drivers/Receivers
Table 1a. MAX245 Control Pin Configurations
ENT
ENR
0
0
Normal Operation
0
1
1
0
1
1
OPERATION STATUS
TRANSMITTERS
RECEIVERS
All Active
All Active
Normal Operation
All Active
All 3-State
Shutdown
All 3-State
All Low-Power Receive Mode
Shutdown
All 3-State
All 3-State
Table 1b. MAX245 Control Pin Configurations
ENT
ENR
TRANSMITTERS
OPERATION
STATUS
TA1–TA4
TB1–TB4
RECEIVERS
RA1–RA5
RB1–RB5
0
0
Normal Operation
All Active
All Active
All Active
All Active
0
1
Normal Operation
All Active
All Active
RA1–RA4 3-State,
RA5 Active
RB1–RB4 3-State,
RB5 Active
1
0
Shutdown
All 3-State
All 3-State
All Low-Power
Receive Mode
All Low-Power
Receive Mode
1
1
Shutdown
All 3-State
All 3-State
RA1–RA4 3-State,
RA5 Low-Power
Receive Mode
RB1–RB4 3-State,
RB5 Low-Power
Receive Mode
Table 1c. MAX246 Control Pin Configurations
ENA
12
ENB
OPERATION
STATUS
TRANSMITTERS
TA1–TA4
TB1–TB4
RECEIVERS
RA1–RA5
RB1–RB5
0
0
Normal Operation
All Active
All Active
All Active
All Active
0
1
Normal Operation
All Active
All 3-State
All Active
RB1–RB4 3-State,
RB5 Active
1
0
Shutdown
All 3-State
All Active
RA1–RA4 3-State,
RA5 Active
All Active
1
1
Shutdown
All 3-State
All 3-State
RA1–RA4 3-State,
RA5 Low-Power
Receive Mode
RB1–RB4 3-State,
RA5 Low-Power
Receive Mode
______________________________________________________________________________________
+5V-Powered, Multichannel RS-232
Drivers/Receivers
TRANSMITTERS
ENTA ENTB ENRA ENRB
OPERATION
STATUS
RECEIVERS
MAX247
TA1–TA4
TB1–TB4
RA1–RA4
RB1–RB5
MAX248
TA1–TA4
TB1–TB4
RA1–RA4
RB1–RB4
TA1–TA3
TB1–TB3
0
0
0
0
Normal Operation
MAX249
All Active
All Active
All Active
RA1–RA5
All Active
RB1–RB5
0
0
0
1
Normal Operation
All Active
All Active
All Active
All 3-State, except
RB5 stays active on
MAX247
0
0
1
0
Normal Operation
All Active
All Active
All 3-State
All Active
0
0
1
1
Normal Operation
All Active
All Active
All 3-State
All 3-State, except
RB5 stays active on
MAX247
0
1
0
0
Normal Operation
All Active
All 3-State
All Active
All Active
0
1
0
1
Normal Operation
All Active
All 3-State
All Active
All 3-State, except
RB5 stays active on
MAX247
0
1
1
0
Normal Operation
All Active
All 3-State
All 3-State
All Active
0
1
1
1
Normal Operation
All Active
All 3-State
All 3-State
All 3-State, except
RB5 stays active on
MAX247
1
0
0
0
Normal Operation
All 3-State
All Active
All Active
All Active
1
0
0
1
Normal Operation
All 3-State
All Active
All Active
All 3-State, except
RB5 stays active on
MAX247
1
0
1
0
Normal Operation
All 3-State
All Active
All 3-State
All Active
1
0
1
1
Normal Operation
All 3-State
All Active
All 3-State
All 3-State, except
RB5 stays active on
MAX247
1
1
0
0
Shutdown
All 3-State
All 3-State
Low-Power
Receive Mode
Low-Power
Receive Mode
1
1
0
1
Shutdown
All 3-State
All 3-State
Low-Power
Receive Mode
All 3-State, except
RB5 stays active on
MAX247
1
1
1
0
Shutdown
All 3-State
All 3-State
All 3-State
Low-Power
Receive Mode
1
1
1
1
Shutdown
All 3-State
All 3-State
All 3-State
All 3-State, except
RB5 stays active on
MAX247
______________________________________________________________________________________
13
MAX220–MAX249
Table 1d. MAX247/MAX248/MAX249 Control Pin Configurations
MAX220–MAX249
+5V-Powered, Multichannel RS-232
Drivers/Receivers
_______________Detailed Description
The MAX220–MAX249 contain four sections: dual
charge-pump DC-DC voltage converters, RS-232 drivers, RS-232 receivers, and receiver and transmitter
enable control inputs.
Dual Charge-Pump Voltage Converter
The MAX220–MAX249 have two internal charge-pumps
that convert +5V to ±10V (unloaded) for RS-232 driver
operation. The first converter uses capacitor C1 to double the +5V input to +10V on C3 at the V+ output. The
second converter uses capacitor C2 to invert +10V to
-10V on C4 at the V- output.
A small amount of power may be drawn from the +10V
(V+) and -10V (V-) outputs to power external circuitry
(see the Typical Operating Characteristics section),
except on the MAX225 and MAX245–MAX247, where
these pins are not available. V+ and V- are not regulated,
so the output voltage drops with increasing load current.
Do not load V+ and V- to a point that violates the minimum ±5V EIA/TIA-232E driver output voltage when
sourcing current from V+ and V- to external circuitry.
When using the shutdown feature in the MAX222,
MAX225, MAX230, MAX235, MAX236, MAX240,
MAX241, and MAX245–MAX249, avoid using V+ and Vto power external circuitry. When these parts are shut
down, V- falls to 0V, and V+ falls to +5V. For applications where a +10V external supply is applied to the V+
pin (instead of using the internal charge pump to generate +10V), the C1 capacitor must not be installed and
the SHDN pin must be tied to VCC. This is because V+
is internally connected to VCC in shutdown mode.
RS-232 Drivers
The typical driver output voltage swing is ±8V when
loaded with a nominal 5kΩ RS-232 receiver and VCC =
+5V. Output swing is guaranteed to meet the EIA/TIA232E and V.28 specification, which calls for ±5V minimum driver output levels under worst-case conditions.
These include a minimum 3kΩ load, VCC = +4.5V, and
maximum operating temperature. Unloaded driver output voltage ranges from (V+ -1.3V) to (V- +0.5V).
Input thresholds are both TTL and CMOS compatible.
The inputs of unused drivers can be left unconnected
since 400kΩ input pull-up resistors to VCC are built in
(except for the MAX220). The pull-up resistors force the
outputs of unused drivers low because all drivers invert.
The internal input pull-up resistors typically source 12µA,
except in shutdown mode where the pull-ups are disabled. Driver outputs turn off and enter a high-impedance state—where leakage current is typically
microamperes (maximum 25µA)—when in shutdown
14
mode, in three-state mode, or when device power is
removed. Outputs can be driven to ±15V. The powersupply current typically drops to 8µA in shutdown mode.
The MAX220 does not have pull-up resistors to force the
outputs of the unused drivers low. Connect unused
inputs to GND or VCC.
The MAX239 has a receiver three-state control line, and
the MAX223, MAX225, MAX235, MAX236, MAX240,
and MAX241 have both a receiver three-state control
line and a low-power shutdown control. Table 2 shows
the effects of the shutdown control and receiver threestate control on the receiver outputs.
The receiver TTL/CMOS outputs are in a high-impedance, three-state mode whenever the three-state enable
line is high (for the MAX225/MAX235/MAX236/MAX239–
MAX241), and are also high-impedance whenever the
shutdown control line is high.
When in low-power shutdown mode, the driver outputs
are turned off and their leakage current is less than 1µA
with the driver output pulled to ground. The driver output
leakage remains less than 1µA, even if the transmitter
output is backdriven between 0V and (VCC + 6V). Below
-0.5V, the transmitter is diode clamped to ground with
1kΩ series impedance. The transmitter is also zener
clamped to approximately V CC + 6V, with a series
impedance of 1kΩ.
The driver output slew rate is limited to less than 30V/µs
as required by the EIA/TIA-232E and V.28 specifications. Typical slew rates are 24V/µs unloaded and
10V/µs loaded with 3Ω and 2500pF.
RS-232 Receivers
EIA/TIA-232E and V.28 specifications define a voltage
level greater than 3V as a logic 0, so all receivers invert.
Input thresholds are set at 0.8V and 2.4V, so receivers
respond to TTL level inputs as well as EIA/TIA-232E and
V.28 levels.
The receiver inputs withstand an input overvoltage up
to ±25V and provide input terminating resistors with
Table 2. Three-State Control of Receivers
PART
SHDN SHDN
EN(R)
RECEIVERS
X
Low
High
EN
__
High Impedance
Active
High Impedance
MAX223
__
Low
High
High
MAX225
__
__
__
Low
High
High Impedance
Active
MAX235
MAX236
MAX240
Low
Low
High
__
__
Low
High
X
High Impedance
Active
High Impedance
______________________________________________________________________________________
+5V-Powered, Multichannel RS-232
Drivers/Receivers
The receiver input hysteresis is typically 0.5V with a
guaranteed minimum of 0.2V. This produces clear output transitions with slow-moving input signals, even
with moderate amounts of noise and ringing. The
receiver propagation delay is typically 600ns and is
independent of input swing direction.
Low-Power Receive Mode
The low-power receive-mode feature of the MAX223,
MAX242, and MAX245–MAX249 puts the IC into shutdown mode but still allows it to receive information. This
is important for applications where systems are periodically awakened to look for activity. Using low-power
receive mode, the system can still receive a signal that
will activate it on command and prepare it for communication at faster data rates. This operation conserves
system power.
Negative Threshold—MAX243
The MAX243 is pin compatible with the MAX232A, differing only in that RS-232 cable fault protection is removed
on one of the two receiver inputs. This means that control
lines such as CTS and RTS can either be driven or left
floating without interrupting communication. Different
cables are not needed to interface with different pieces of
equipment.
The input threshold of the receiver without cable fault
protection is -0.8V rather than +1.4V. Its output goes
positive only if the input is connected to a control line
that is actively driven negative. If not driven, it defaults
to the 0 or “OK to send” state. Normally‚ the MAX243’s
other receiver (+1.4V threshold) is used for the data line
(TD or RD)‚ while the negative threshold receiver is connected to the control line (DTR‚ DTS‚ CTS‚ RTS, etc.).
Other members of the RS-232 family implement the
optional cable fault protection as specified by EIA/TIA232E specifications. This means a receiver output goes
high whenever its input is driven negative‚ left floating‚
or shorted to ground. The high output tells the serial
communications IC to stop sending data. To avoid this‚
the control lines must either be driven or connected
with jumpers to an appropriate positive voltage level.
Shutdown—MAX222–MAX242
On the MAX222‚ MAX235‚ MAX236‚ MAX240‚ and
MAX241‚ all receivers are disabled during shutdown.
On the MAX223 and MAX242‚ two receivers continue to
operate in a reduced power mode when the chip is in
shutdown. Under these conditions‚ the propagation
delay increases to about 2.5µs for a high-to-low input
transition. When in shutdown, the receiver acts as a
CMOS inverter with no hysteresis. The MAX223 and
MAX242 also have a receiver output enable input (EN
for the MAX242 and EN for the MAX223) that allows
receiver output control independent of SHDN (SHDN
for MAX241). With all other devices‚ SHDN (SHDN for
MAX241) also disables the receiver outputs.
The MAX225 provides five transmitters and five
receivers‚ while the MAX245 provides ten receivers and
eight transmitters. Both devices have separate receiver
and transmitter-enable controls. The charge pumps
turn off and the devices shut down when a logic high is
applied to the ENT input. In this state, the supply current drops to less than 25µA and the receivers continue
to operate in a low-power receive mode. Driver outputs
enter a high-impedance state (three-state mode). On
the MAX225‚ all five receivers are controlled by the
ENR input. On the MAX245‚ eight of the receiver outputs are controlled by the ENR input‚ while the remaining two receivers (RA5 and RB5) are always active.
RA1–RA4 and RB1–RB4 are put in a three-state mode
when ENR is a logic high.
Receiver and Transmitter Enable
Control Inputs
The MAX225 and MAX245–MAX249 feature transmitter
and receiver enable controls.
The receivers have three modes of operation: full-speed
receive (normal active)‚ three-state (disabled)‚ and lowpower receive (enabled receivers continue to function
at lower data rates). The receiver enable inputs control
the full-speed receive and three-state modes. The
transmitters have two modes of operation: full-speed
transmit (normal active) and three-state (disabled). The
transmitter enable inputs also control the shutdown
mode. The device enters shutdown mode when all
transmitters are disabled. Enabled receivers function in
the low-power receive mode when in shutdown.
______________________________________________________________________________________
15
MAX220–MAX249
nominal 5kΩ values. The receivers implement Type 1
interpretation of the fault conditions of V.28 and
EIA/TIA-232E.
MAX220–MAX249
+5V-Powered, Multichannel RS-232
Drivers/Receivers
Tables 1a–1d define the control states. The MAX244
has no control pins and is not included in these tables.
The MAX246 has ten receivers and eight drivers with
two control pins, each controlling one side of the
device. A logic high at the A-side control input (ENA)
causes the four A-side receivers and drivers to go into
a three-state mode. Similarly, the B-side control input
(ENB) causes the four B-side drivers and receivers to
go into a three-state mode. As in the MAX245, one Aside and one B-side receiver (RA5 and RB5) remain
active at all times. The entire device is put into shutdown mode when both the A and B sides are disabled
(ENA = ENB = +5V).
The MAX247 provides nine receivers and eight drivers
with four control pins. The ENRA and ENRB receiver
enable inputs each control four receiver outputs. The
ENTA and ENTB transmitter enable inputs each control
four drivers. The ninth receiver (RB5) is always active.
The device enters shutdown mode with a logic high on
both ENTA and ENTB.
The MAX249 provides ten receivers and six drivers with
four control pins. The ENRA and ENRB receiver enable
inputs each control five receiver outputs. The ENTA
and ENTB transmitter enable inputs control three drivers each. There is no always-active receiver. The
device enters shutdown mode and transmitters go into
a three-state mode with a logic high on both ENTA and
ENTB. In shutdown mode, active receivers operate in a
low-power receive mode at data rates up to
20kbits/sec.
__________Applications Information
Figures 5 through 25 show pin configurations and typical operating circuits. In applications that are sensitive
to power-supply noise, VCC should be decoupled to
ground with a capacitor of the same value as C1 and
C2 connected as close as possible to the device.
The MAX248 provides eight receivers and eight drivers
with four control pins. The ENRA and ENRB receiver
enable inputs each control four receiver outputs. The
ENTA and ENTB transmitter enable inputs control four
drivers each. This part does not have an always-active
receiver. The device enters shutdown mode and transmitters go into a three-state mode with a logic high on
both ENTA and ENTB.
16
______________________________________________________________________________________
+5V-Powered, Multichannel RS-232
Drivers/Receivers
MAX220–MAX249
+5V INPUT
C3
TOP VIEW
C5
C1+ 1
16 VCC
V+ 2
15 GND
C1- 3
14 T1OUT
MAX220
MAX232
MAX232A
C2+ 4
C2- 5
1
C1
C2
13 R1IN
11 T1IN
T2OUT 7
TTL/CMOS
INPUTS
10 T2IN
9
R2IN 8
R2OUT
DIP/SO
DEVICE
MAX220
MAX232
MAX232A
-10V
C4
T1OUT 14
RS-232
OUTPUTS
400kΩ
10 T2IN
T2OUT 7
R1IN 13
TTL/CMOS
OUTPUTS
C5
4.7
1.0
0.1
6
V-
+5V
12 R1OUT
CAPACITANCE (µF)
C1 C2 C3 C4
4.7 4.7 10 10
1.0 1.0 1.0 1.0
0.1 0.1 0.1 0.1
V+ 2 +10V
3 C14
C2+
+10V TO -10V
5 C2- VOLTAGE INVERTER
+5V
400kΩ
11 T1IN
12 R1OUT
V- 6
16
VCC
+5V TO +10V
VOLTAGE DOUBLER
C1+
RS-232
INPUTS
5kΩ
R2IN 8
9 R2OUT
5kΩ
GND
15
Figure 5. MAX220/MAX232/MAX232A Pin Configuration and Typical Operating Circuit
+5V INPUT C3
ALL CAPACITORS = 0.1µF
TOP VIEW
C5
17
VCC
3 +10V
C1+
+5V TO +10V
V+
4 C1- VOLTAGE DOUBLER
5
C2+
7 -10V
+10V TO -10V
V6 C2C4
VOLTAGE INVERTER
2
(N.C.) EN 1
(N.C.) EN 1
C1+ 2
19 VCC
C1+ 2
17 VCC
V+ 3
18 GND
V+ 3
16 GND
C1- 4
17 T1OUT
C1- 4
15 T1OUT
C2+ 5
14 R1IN
C2- 6
C2+ 5
18 SHDN
MAX222
MAX242
C2- 6
13 R1OUT
V- 7
12 T1IN
T2OUT 8
11 T2IN
R2IN 9
10 R2OUT
DIP/SO
MAX222
MAX242
C2
+5V
400kΩ
12 T1IN
16 N.C.
15 R1IN
V- 7
T2OUT
C1
20 SHDN
14 R1OUT
8
13 N.C.
R2IN 9
12 T1IN
R2OUT 10
11 T2IN
TTL/CMOS
INPUTS
(EXCEPT MAX220)
T1OUT 15
+5V
400kΩ
11 T2IN
T2OUT 8
13 R1OUT
R1IN 14
TTL/CMOS
OUTPUTS
SSOP
RS-232
INPUTS
5kΩ
R2IN 9
10 R2OUT
1 (N.C.) EN
( ) ARE FOR MAX222 ONLY.
PIN NUMBERS IN TYPICAL OPERATING CIRCUIT ARE FOR DIP/SO PACKAGES ONLY.
RS-232
OUTPUTS
(EXCEPT MAX220)
5kΩ
SHDN
GND
18
16
Figure 6. MAX222/MAX242 Pin Configurations and Typical Operating Circuit
______________________________________________________________________________________
17
MAX220–MAX249
+5V-Powered, Multichannel RS-232
Drivers/Receivers
+5V
TOP VIEW
0.1
+5V
28
VCC
27
VCC
400kΩ
T1IN
3
ENR 1
28 VCC
ENR 2
27 VCC
T1IN 3
26 ENT
T2IN 4
25 T3IN
R1OUT 5
MAX225
24 T4IN
R2OUT 6
23 T5IN
R3OUT 7
22 R4OUT
R3IN
21 R5OUT
8
R2IN 9
20 R5IN
R1IN 10
19 R4IN
T1OUT 11
18 T3OUT
T2OUT 12
17 T4OUT
GND 13
16 T5OUT
GND 14
15 T5OUT
SO
T1OUT
+5V
11
400kΩ
T2IN
4
T2OUT
+5V
12
400kΩ
T3IN
25
T3OUT
+5V
18
400kΩ
T4IN
24
T4OUT
+5V
17
400kΩ
T5OUT
T5IN
23
ENT
26
T5OUT
R1OUT
5
R1IN
16
15
10
5kΩ
R2IN
R2OUT
6
9
5kΩ
R3OUT
7
MAX225 FUNCTIONAL DESCRIPTION
5 RECEIVERS
5 TRANSMITTERS
2 CONTROL PINS
1 RECEIVER ENABLE (ENR)
1 TRANSMITTER ENABLE (ENT)
R3IN
5kΩ
R4OUT
22
R4IN
R5OUT
R5IN
5kΩ
1
2
ENR
ENR
GND
13
GND
14
Figure 7. MAX225 Pin Configuration and Typical Operating Circuit
18
19
5kΩ
21
PINS (ENR, GND, VCC, T5OUT) ARE INTERNALLY CONNECTED.
CONNECT EITHER OR BOTH EXTERNALLY. T5OUT IS A SINGLE DRIVER.
8
______________________________________________________________________________________
20
+5V-Powered, Multichannel RS-232
Drivers/Receivers
MAX220–MAX249
+5V INPUT
TOP VIEW
1.0µF
12
11
VCC
+5V TO +10V
VOLTAGE DOUBLER
C1+
1.0µF
14
C115
C2+
1.0µF
16 C2-
1.0µF
V+
+10V TO -10V
VOLTAGE INVERTER
V-
13
17
1.0µF
+5V
400kΩ
7 T1IN
T3OUT 1
28 T4OUT
T1OUT 2
27 R3IN
T2OUT 3
25 SHDN (SHDN)
R2OUT 5
T2IN 6
24 EN (EN)
MAX223
MAX241
T1IN 7
400kΩ
6 T2IN
GND 10
19 R5OUT*
VCC 11
18 R5IN*
C1+ 12
17 V-
V+ 13
16 C2-
C1- 14
15 C2+
Wide SO/
SSOP
RS-232
OUTPUTS
T3
T3OUT 1
+5V
400kΩ
21 T4IN
20 T3IN
T2OUT 3
400kΩ
20 T3IN
23 R4IN*
R1IN 9
T2
+5V
TTL/CMOS
INPUTS
22 R4OUT*
R1OUT 8
T1OUT 2
+5V
26 R3OUT
R2IN 4
T1
21 T4IN
8 R1OUT
T4
T4OUT 28
R1
R1IN 9
5kΩ
5 R2OUT
R2
R2IN 4
5kΩ
LOGIC
OUTPUTS
26 R3OUT
R3
R3IN
27
5kΩ
22 R4OUT
R4
R4IN
RS-232
INPUTS
23
5kΩ
19 R5OUT
R5
*R4 AND R5 IN MAX223 REMAIN ACTIVE IN SHUTDOWN
NOTE: PIN LABELS IN ( ) ARE FOR MAX241
24 EN (EN)
GND
R5IN
18
5kΩ
SHDN 25
(SHDN)
10
Figure 8. MAX223/MAX241 Pin Configuration and Typical Operating Circuit
______________________________________________________________________________________
19
MAX220–MAX249
+5V-Powered, Multichannel RS-232
Drivers/Receivers
+5V INPUT
1.0µF
TOP VIEW
1.0µF
T3OUT
20 T4OUT
1
T1OUT 2
19 T5IN
T2OUT 3
18 N.C.
T2IN 4
1.0µF
MAX230
11
+10V TO -10V
C2+
12
C2- VOLTAGE INVERTER
15 T4IN
VCC 7
14 T3IN
C1+ 8
13 V-
V+ 9
12 C2-
C1- 10
11 C2+
13
1.0µF
400kΩ
5 T1IN
T1OUT 2
T1
+5V
16 T5OUT
GND 6
V-
1.0µF
+5V
17 SHDN
T1IN 5
7
VCC
V+ 9
+5V TO +10V
VOLTAGE DOUBLER
8 C1+
10 C1-
400kΩ
4 T2IN
T2OUT 3
T2
+5V
400kΩ
TTL/CMOS
INPUTS
14 T3IN
T3OUT 1
T3
RS-232
OUTPUTS
+5V
400kΩ
15 T4IN
T4OUT 20
T4
+5V
400kΩ
DIP/SO
19 T5IN
T5OUT 16
T5
N.C. x 18
17
GND
SHDN
6
Figure 9. MAX230 Pin Configuration and Typical Operating Circuit
+5V INPUT
TOP VIEW
+7.5V TO +12V
1.0µF
13 (15)
1
2
1.0µF
C+ 1
CV-
2
C+ 1
16 V+
13 VCC
C- 2
15 VCC
V- 3
12 GND
3
T2OUT 4
14 V+
MAX231
11 T1OUT
T2OUT 4
9
R1OUT
T2IN 7
8
T1IN
R2OUT 6
8
10 T1IN
N.C. 8
9
N.C.
DIP
SO
V-
T1IN
C2
1.0µF
(13)
RS-232
OUTPUTS
400kΩ
(11)
7
T2IN
9
R1OUT
T2OUT 4
T2
R1IN 10
R1
TTL/CMOS
OUTPUTS
5kΩ
6 R2OUT
R2IN 5
R2
(12)
RS-232
INPUTS
GND
12 (14)
Figure 10. MAX231 Pin Configurations and Typical Operating Circuit
20
(16)
3
T1OUT 11
T1
5kΩ
PIN NUMBERS IN ( ) ARE FOR SO PACKAGE
14
+5V
TTL/CMOS
INPUTS
11 R1OUT
T2IN 7
V+
400kΩ
(10)
12 R1IN
R2IN 5
10 R1IN
R2IN 5
R2OUT 6
13 T1OUT
C1-
VCC
+12V TO -12V
VOLTAGE CONVERTER
+5V
14 GND
MAX231
C1+
______________________________________________________________________________________
+5V-Powered, Multichannel RS-232
Drivers/Receivers
MAX220–MAX249
+5V INPUT
1.0µF
TOP VIEW
7
VCC
+5V
400kΩ
T2IN
1
T1IN 2
19 R2IN
R1OUT 3
17 V-
MAX233
MAX233A
15 C2+
VCC 7
14 V+ (C1-)
GND 9
12 V- (C2+)
(V-) CS- 10
RS-232
OUTPUTS
400kΩ
1
T2IN
3
R1OUT
T2OUT
18
R1IN 4
11 C2+ (C2-)
DIP/SO
5kΩ
TTL/CMOS
OUTPUTS
20 R2OUT
13 C1- (C1+)
8
+5V
16 C2-
GND 6
(V+) C1+
T1OUT 5
T1IN
TTL/CMOS
INPUTS
18 T2OUT
R1IN 4
T1OUT 5
2
20 R2OUT
8 (13)
DO NOT MAKE
CONNECTIONS TO 13 (14)
THESE PINS
12 (10)
INTERNAL -10
17
POWER SUPPLY
INTERNAL +10V
POWER SUPPLY
RS-232
OUTPUTS
R2IN 19
5kΩ C2+ 11 (12)
C1+
C1-
C2+
V-
C2-
V14 (8) V+
C2GND
15
16
10 (11)
GND
6
9
( ) ARE FOR SO PACKAGE ONLY.
Figure 11. MAX233/MAX233A Pin Configuration and Typical Operating Circuit
+5V INPUT
1.0µF
TOP VIEW
7
1.0µF
9
10
1.0µF
T1OUT 1
16 T3OUT
T2OUT 2
C1C2+
11 C2-
12 V-
VCC 6
11 C2-
C1+ 7
10 C2+
9
V+ 8
4 T1IN
13 T3IN
GND 5
C1-
+10V TO -10V
VOLTAGE INVERTER
1.0µF
8
V+
V-
12
1.0µF
400kΩ
14 T4IN
MAX234
6
VCC
+5V TO +10V
VOLTAGE DOUBLER
+5V
15 T4OUT
T2IN 3
T1IN 4
C1+
T1
T1OUT 1
+5V
400kΩ
3 T2IN
T2
T2OUT 3
+5V
TTL/CMOS
INPUTS
RS-232
OUTPUTS
400kΩ
13 T3IN
T3
T3OUT 16
+5V
DIP/SO
400kΩ
14 T4IN
T4
T4OUT 15
GND
5
Figure 12. MAX234 Pin Configuration and Typical Operating Circuit
______________________________________________________________________________________
21
MAX220–MAX249
+5V-Powered, Multichannel RS-232
Drivers/Receivers
+5V INPUT
TOP VIEW
1.0µF
12
+5V
VCC
400kΩ
8 T1IN
T1
T1OUT 3
T2
T2OUT 4
+5V
400kΩ
7 T2IN
+5V
400kΩ
TTL/CMOS
INPUTS
T4OUT 1
24 R3IN
T3OUT 2
23 R3OUT
T1OUT 3
22 T5IN
T2OUT 4
21 SHDN
R2IN 5
MAX235
R2OUT 6
15 T3IN
T3OUT 2
T3
+5V
400kΩ
16 T4IN
22 T5IN
T4OUT 1
T4
+5V
20 EN
400kΩ
T5OUT 19
T5
19 T5OUT
T2IN 7
18 R4IN
T1IN 8
17 R4OUT
R1OUT 9
16 T4IN
R1IN 10
15 T3IN
GND 11
14 R5OUT
VCC 12
13 R5IN
DIP
9 R1OUT
R1IN 10
T1
5kΩ
6 R2OUT
R2IN 5
R2
5kΩ
TTL/CMOS
OUTPUTS
23 R3OUT
R3IN 24
R3
5kΩ
17 R4OUT
R4IN 18
R4
5kΩ
14 R5OUT
R5IN 13
R5
5kΩ
20 EN
SHDN
21
GND
11
Figure 13. MAX235 Pin Configuration and Typical Operating Circuit
22
RS-232
OUTPUTS
______________________________________________________________________________________
RS-232
INPUTS
+5V-Powered, Multichannel RS-232
Drivers/Receivers
MAX220–MAX249
TOP VIEW
+5V INPUT
1.0µF
9
10
1.0µF
12
13
1.0µF
1.0µF
VCC
+5V TO +10V
VOLTAGE DOUBLER
C1+
C1-
V+
C2+
V-
+10V TO -10V
VOLTAGE INVERTER
14 C2-
11
15
1.0µF
+5V
400kΩ
7 T1IN
T3OUT 1
24 T4OUT
T1OUT 2
23 R2IN
T2OUT 3
22 R2OUT
R1IN 4
21 SHDN
R1OUT 5
MAX236
+5V
400kΩ
6 T2IN
TTL/CMOS
INPUTS
19 T4IN
T1IN 7
18 T3IN
GND 8
17 R3OUT
VCC 9
16 R3IN
C1+ 10
15 V-
V+ 11
14 C2-
C1- 12
13 C2+
T2OUT
T2
3
RS-232
OUTPUTS
+5V
400kΩ
20 EN
T2IN 6
T1OUT 2
T1
18 T3IN
T3OUT 1
T3
+5V
400kΩ
19 T4IN
5 R1OUT
T4OUT 24
T4
R1IN 4
R1
5kΩ
DIP/SO
TTL/CMOS
OUTPUTS
22 R2OUT
R2IN
R2
23
RS-232
INPUTS
5kΩ
17 R3OUT
R3IN
R3
16
5kΩ
20 EN
SHDN
21
GND
8
Figure 14. MAX236 Pin Configuration and Typical Operating Circuit
______________________________________________________________________________________
23
MAX220–MAX249
+5V-Powered, Multichannel RS-232
Drivers/Receivers
TOP VIEW
+5V INPUT
1.0µF
10
1.0µF
12
13
1.0µF
14
1.0µF
9
VCC
+5V TO +10V
VOLTAGE DOUBLER
C1+
C1C2+
V+
V-
+10V TO -10V
VOLTAGE INVERTER
C2-
11
15
1.0µF
+5V
400kΩ
T3OUT 1
24 T4OUT
T1OUT 2
23 R2IN
T2OUT 3
22 R2OUT
R1IN 4
R1OUT 5
7 T1IN
400kΩ
6 T2IN
21 T5IN
MAX237
T2IN 6
+5V
20 T5OUT
19 T4IN
T1IN 7
18 T3IN
GND 8
17 R3OUT
VCC 9
16 R3IN
C1+ 10
15 V-
V+ 11
14 C2-
C1- 12
13 C2+
T1OUT 2
T1
+5V
T2OUT
T2
3
400kΩ
TTL/CMOS
INPUTS
18 T3IN
+5V
T3OUT 1
T3
RS-232
OUTPUTS
400kΩ
19 T4IN
+5V
T4OUT 24
T4
400kΩ
21 T5IN
DIP/SO
5 R1OUT
T5OUT 20
T5
R1
R1IN 4
5kΩ
TTL/CMOS
OUTPUTS
22 R2OUT
R2
R2IN
23
5kΩ
17 R3OUT
R3
R3IN
5kΩ
GND
8
Figure 15. MAX237 Pin Configuration and Typical Operating Circuit
24
______________________________________________________________________________________
16
RS-232
INPUTS
+5V-Powered, Multichannel RS-232
Drivers/Receivers
MAX220–MAX249
TOP VIEW
+5V INPUT
1.0µF
1.0µF
9
10
1.0µF
12
13
1.0µF
14
VCC
+5V TO +10V
VOLTAGE DOUBLER
C1+
C1-
V+
C2+
V-
+10V TO -10V
VOLTAGE INVERTER
C2-
11
15
1.0µF
+5V
400kΩ
T2OUT 1
24 T3OUT
T1OUT 2
23 R3IN
R2IN 3
T1OUT 2
T1
+5V
400kΩ
22 R3OUT
18 T2IN
21 T4IN
R2OUT 4
T1IN 5
5 T1IN
MAX238
20 T4OUT
R1OUT 6
19 T3IN
R1IN 7
18 T2IN
GND 8
17 R4OUT
VCC 9
16 R4IN
C1+ 10
15 V-
V+ 11
14 C2-
C1- 12
13 C2+
T2OUT
T2
1
+5V
TTL/CMOS
INPUTS
RS-232
OUTPUTS
400kΩ
19 T3IN
T3OUT 24
T3
+5V
400kΩ
21 T4IN
6 R1OUT
T4OUT 20
T4
R1
R1IN 7
5kΩ
DIP/SO
4 R2OUT
R2
TTL/CMOS
OUTPUTS
R2IN
3
RS-232
INPUTS
5kΩ
22 R3OUT
R3
R3IN
23
5kΩ
17 R4OUT
R4
R4IN
16
5kΩ
GND
8
Figure 16. MAX238 Pin Configuration and Typical Operating Circuit
______________________________________________________________________________________
25
MAX220–MAX249
+5V-Powered, Multichannel RS-232
Drivers/Receivers
TOP VIEW
7.5V TO 13.2V
INPUT
+5V INPUT
1.0µF
4
6
1.0µF
7
5
VCC
C1+
V+
V-
+10V TO -10V
VOLTAGE INVERTER
C1-
8
1.0µF
+5V
400kΩ
24 T1IN
R1OUT 1
24 T1IN
R1IN 2
23 T2IN
GND 3
22 R2OUT
VCC 4
V+ 5
+5V
400kΩ
TTL/CMOS
INPUTS
23 T2IN
19 T1OUT
C- 7
18 R3IN
V- 8
17 R3OUT
R5IN 9
16 T3IN
R5OUT 10
15 N.C.
R4OUT 11
14 EN
16 T3IN
1 R1OUT
R1
R1IN 2
5kΩ
22 R2OUT
R2
R2IN 21
5kΩ
DIP/SO
TTL/CMOS
OUTPUTS
17 R3OUT
R3
R3IN
18
5kΩ
11 R4OUT
R4
R4IN
12
5kΩ
10 R5OUT
R5
R5IN
5kΩ
14 EN
N.C.
GND
3
Figure 17. MAX239 Pin Configuration and Typical Operating Circuit
26
RS-232
OUTPUTS
T3OUT 13
T3
13 T3OUT
R4IN 12
20
400kΩ
20 T2OUT
C+ 6
T2OUT
T2
+5V
21 R2IN
MAX239
T1OUT 19
T1
______________________________________________________________________________________
9
15
RS-232
INPUTS
+5V-Powered, Multichannel RS-232
Drivers/Receivers
MAX220–MAX249
+5V INPUT
1.0µF
TOP VIEW
25
19
VCC
+5V TO +10V
VOLTAGE DOUBLER
C1+
1.0µF
27
C128
C2+
1.0µF
29 C2-
1.0µF
V+
+5V TO -10V
VOLTAGE INVERTER
V-
26
30
1.0µF
+5V
400kΩ
15 T1IN
T1
+5V
400kΩ
N.C.
R2IN
N.C.
T2OUT
T1OUT
T3OUT
T4OUT
R3IN
R3OUT
T5IN
N.C.
14 T2IN
T2
+5V
11
10
9
8
7
6
5
4
3
2
1
TTL/CMOS
INPUTS
T3
12
13
14
15
16
17
18
19
20
21
22
MAX240
44
43
42
41
40
39
38
37
36
35
34
N.C.
SHDN
EN
T5OUT
R4IN
R4OUT
T4IN
T3IN
R5OUT
R5IN
N.C.
+5V
2 T5IN
16 R1OUT
N.C.
N.C.
C1+
V+
C1C2+
C2
VN.C.
N.C.
N.C.
8
T3OUT 6
RS-232
OUTPUTS
400kΩ
38 T4IN
T4
T4OUT 5
400kΩ
T5
R1
T5OUT
41
R1IN 17
5kΩ
13 R2OUT
R2
R2IN 10
5kΩ
23
24
25
26
27
28
29
30
31
32
33
N.C.
R2OUT
T2IN
T1IN
R1OUT
R1IN
GND
VCC
N.C.
N.C.
N.C.
T2OUT
400kΩ
37 T3IN
+5V
T1OUT 7
TTL/CMOS
OUTPUTS
3 R3OUT
R3
R3IN
4
5kΩ
RS-232
INPUTS
Plastic FP
39 R4OUT
R4
R4IN
40
5kΩ
36 R5OUT
R5
R5IN
35
5kΩ
42 EN
GND
SHDN 43
18
Figure 18. MAX240 Pin Configuration and Typical Operating Circuit
______________________________________________________________________________________
27
MAX220–MAX249
+5V-Powered, Multichannel RS-232
Drivers/Receivers
+5V INPUT
TOP VIEW
0.1µF
1
C1+ 1
16 VCC
V+ 2
15 GND
C1- 3
14 T1OUT
C2+ 4
MAX243
C2- 5
0.1µF
3 C14
C2+
0.1µF
5 C2-
16
VCC
+5V TO +10V
VOLTAGE DOUBLER
+10V TO -10V
VOLTAGE INVERTER
11 T1IN
T2OUT 7
10 T2IN
9
V-
2
+10V
6
-10V
0.1µF
400kΩ
13 R1IN
V- 6
V+
+5V
T1OUT 14
11 T1IN
12 R1OUT
R2IN 8
C1+
ALL CAPACITORS = 0.1µF
0.1µF
+5V
TTL/CMOS
INPUTS
RS-232
OUTPUTS
400kΩ
T2OUT 7
10 T2IN
R2OUT
DIP/SO
R1IN 13
12 R1OUT
TTL/CMOS
OUTPUTS
9 R2OUT
RECEIVER INPUT
≤ -3 V
OPEN
≥ +3V
R1 OUTPUT
HIGH
HIGH
LOW
R2 OUTPUT
HIGH
LOW
LOW
R2IN 8
5kΩ
GND
15
Figure 19. MAX243 Pin Configuration and Typical Operating Circuit
28
RS-232
INPUTS
5kΩ
______________________________________________________________________________________
+5V-Powered, Multichannel RS-232
Drivers/Receivers
MAX220–MAX249
+5V
TOP VIEW
1µF
1µF
20
VCC
+5V TO +10V VOLTAGE DOUBLER
5
4
3
2
1
TB4OUT
1µF
RB5IN
TB3OUT
TB2OUT
TB1OUT
TA1OUT
TA2OUT
TA3OUT
TA4OUT
RA4IN
6
RA5IN
21
1µF
44 43 42 41 40
C1+
23 C124
C2+
25 C2-
22
V+
26
V- 1µF
+10V TO -10V VOLTAGE INVERTER
2 TA1OUT
+5V
+5V
TB1OUT 44
400kΩ
RA3IN
7
39 RB4IN
RA2IN
8
38 RB3IN
RA1IN
9
37 RB2IN
RA1OUT
10
36 RB1IN
RA2OUT
11
35 RB1OUT
RA3OUT
12
RA4OUT
13
33 RB3OUT
RA5OUT
14
32 RB4OUT
TA1IN
15
31 RB5OUT
TA2IN
16
30 TB1IN
TA3IN
17
29 TB2IN
MAX244
TB3IN
TB4IN
V-
C2-
C2+
C1-
V+
GND
VCC
19 20 21 22 23 24 25 26 27 28
C1+
18
TA4IN
34 RB2OUT
PLCC
15 TA1IN
2 TA2OUT
TB1IN 30
+5V
+5V
16 TA2IN
TB2IN 29
3 TA3OUT
+5V
+5V
TB3OUT 42
400kΩ
17 TA3IN
TB3IN 28
4 TA4OUT
+5V
+5V
TB4OUT 41
400kΩ
18 TA4IN
TB4IN 27
9 RA1IN
RB1IN 36
5kΩ
5kΩ
RB1OUT 35
10 RA1OUT
8 RA2IN
MAX249 FUNCTIONAL DESCRIPTION
10 RECEIVERS
5 A-SIDE RECEIVER
5 B-SIDE RECEIVER
8 TRANSMITTERS
4 A-SIDE TRANSMITTERS
4 B-SIDE TRANSMITTERS
NO CONTROL PINS
TB2OUT 43
400kΩ
RB2IN 37
5kΩ
5kΩ
11 RA2OUT
RB2OUT 34
7 RA3IN
RB3IN 38
5kΩ
5kΩ
12 RA3OUT
RB3OUT 33
6 RA4IN
RB4IN 39
5kΩ
5kΩ
RB4OUT 32
13 RA4OUT
5 RA5IN
RB5IN 40
5kΩ
5kΩ
14 RA5OUT
GND
19
RB5OUT 31
Figure 20. MAX244 Pin Configuration and Typical Operating Circuit
______________________________________________________________________________________
29
MAX220–MAX249
+5V-Powered, Multichannel RS-232
Drivers/Receivers
+5V
TOP VIEW
1µF
40
VCC
ENR
1
40
VCC
TA1IN
2
39
ENT
TA2IN
3
38
TB1IN
TA3IN
4
37
TB2IN
TA4IN
5
36
TB3IN
RA5OUT
6
35
TB4IN
RA4OUT
7
34
RB5OUT
MAX245
RA3OUT
8
33
RB4OUT
RA2OUT
9
32
RB3OUT
RA1OUT
10
31
RB2OUT
RA1IN
11
30
RB1OUT
RA2IN
12
29
RB1IN
RA3IN
13
28
RB2IN
RA4IN
14
27
RB3IN
RA5IN
15
26
RB4IN
TA1OUT
16
25
RB5IN
TA2OUT
17
24
TB1OUT
TA3OUT
18
TA4OUT
GND
23
TB2OUT
19
22
TB3OUT
20
21
TB4OUT
16 TA1OUT
+5V
+5V
TB1IN 38
2 TA1IN
17 TA2OUT
+5V
+5V
TB2IN 37
3 TA2IN
18 TA3OUT
+5V
+5V
TB3OUT 22
400kΩ
4 TA3IN
TB3IN 36
19 TA4OUT
+5V
+5V
TB4OUT 21
400kΩ
5 TA4IN
TB4IN 35
1 ENR
ENT 39
11 RA1IN
RB1IN 29
5kΩ
5kΩ
10 RA1OUT
RB1OUT 30
RB2IN 28
12 RA2IN
5kΩ
5kΩ
RB2OUT 31
RB3IN 27
13 RA3IN
5kΩ
5kΩ
MAX245 FUNCTIONAL DESCRIPTION
10 RECEIVERS
5 A-SIDE RECEIVERS (RA5 ALWAYS ACTIVE)
5 B-SIDE RECEIVERS (RB5 ALWAYS ACTIVE)
8 TRANSMITTTERS
4 A-SIDE TRANSMITTERS
2 CONTROL PINS
1 RECEIVER ENABLE (ENR)
1 TRANSMITTER ENABLE (ENT)
TB2OUT 23
400kΩ
9 RA2OUT
DIP
TB1OUT 24
400kΩ
8 RA3OUT
RB3OUT 32
14 RA4IN
RB4IN 26
5kΩ
5kΩ
7 RA4OUT
RB4OUT 33
15 RA5IN
RB5IN 25
5kΩ
5kΩ
6 RA5OUT
RB5OUT 34
GND
20
Figure 21. MAX245 Pin Configuration and Typical Operating Circuit
30
______________________________________________________________________________________
+5V-Powered, Multichannel RS-232
Drivers/Receivers
MAX220–MAX249
+5V
TOP VIEW
1µF
ENA
1
40
VCC
TA1IN
2
39
ENB
TA2IN
3
38
TB1IN
TA3IN
4
37
TB2IN
TA4IN
5
36
TB3IN
RA5OUT
6
35
TB4IN
RA4OUT
7
34
RB5OUT
RA3OUT
8
33
RB4OUT
MAX246
RA2OUT
9
32
RB3OUT
RA1OUT
10
31
RB2OUT
RA1IN
11
30
RB1OUT
RA2IN
12
29
RB1IN
RA3IN
13
28
RB2IN
RA4IN
14
27
RB3IN
RA5IN
15
26
RB4IN
TA1OUT
16
25
RB5IN
TA2OUT
17
24
TB1OUT
TA3OUT
18
23
TB2OUT
TA4OUT
19
22
TB3OUT
GND
20
21
TB4OUT
DIP
40
VCC
+5V
+5V
16 TA1OUT
TB1OUT 24
400kΩ
2 TA1IN
TB1IN 38
+5V
+5V
17 TA2OUT
TB2OUT 23
400kΩ
3 TA2IN
TB2IN 37
+5V
+5V
18 TA3OUT
TB3OUT 22
400kΩ
4 TA3IN
TB3IN 36
+5V
+5V
TB4OUT 21
19 TA4OUT
400kΩ
5 TA4IN
TB4IN 35
1 ENA
ENB 39
RB1IN 29
11 RA1IN
5kΩ
5kΩ
10 RA1OUT
RB1OUT 30
RB2IN 28
12 RA2IN
5kΩ
5kΩ
9 RA2OUT
RB2OUT 31
13 RA3IN
MAX246 FUNCTIONAL DESCRIPTION
10 RECEIVERS
5 A-SIDE RECEIVERS (RA5 ALWAYS ACTIVE)
5 B-SIDE RECEIVERS (RB5 ALWAYS ACTIVE)
8 TRANSMITTERS
4 A-SIDE TRANSMITTERS
4 B-SIDE TRANSMITTERS
2 CONTROL PINS
ENABLE A-SIDE (ENA)
ENABLE B-SIDE (ENB)
RB3IN 27
5kΩ
5kΩ
8 RA3OUT
RB3OUT 32
RB4IN 26
14 RA4IN
5kΩ
5kΩ
7 RA4OUT
RB4OUT 33
RB5IN 25
15 RA5IN
5kΩ
6 RA5OUT
5kΩ
RB5OUT 34
GND
20
Figure 22. MAX246 Pin Configuration and Typical Operating Circuit
______________________________________________________________________________________
31
MAX220–MAX249
+5V-Powered, Multichannel RS-232
Drivers/Receivers
+5V
TOP VIEW
1µF
40
VCC
+5V
+5V
1 ENTA
ENTA
1
40
VCC
TA1IN
2
39
ENTB
TA2IN
3
38
TB1IN
TA3IN
4
37
TB2IN
TA4IN
5
36
TB3IN
RB5OUT
6
35
TB4IN
RA4OUT
7
34
RB4OUT
RA3OUT
8
33
RB3OUT
MAX247
RA2OUT
9
32
RB2OUT
RA1OUT
10
31
RB1OUT
ENRA
11
30
ENRB
RA1IN
12
29
RB1IN
RA2IN
13
28
RB2IN
RA3IN
14
27
RB3IN
RA4IN
15
26
RB4IN
TA1OUT
16
25
RB5IN
TA2OUT
17
24
TB1OUT
TA3OUT
18
23
TB2OUT
TA4OUT
19
22
TB3OUT
GND
20
21
TB4OUT
ENTB 39
TB1OUT 24
16 TA1OUT
400kΩ
TB1IN 38
2 TA1IN
+5V
+5V
17 TA2OUT
TB2OUT 23
400kΩ
3 TA2IN
TB2IN 37
+5V
+5V
TB3OUT 22
18 TA3OUT
400kΩ
TB3IN 36
4 TA3IN
+5V
+5V
TB4OUT 21
19 TA4OUT
400kΩ
5 TA4IN
TB4IN 35
6 RB5OUT
RB5IN 25
5kΩ
RB1IN 29
12 RA1IN
5kΩ
5kΩ
RB1OUT 31
10 RA1OUT
RB2IN 28
13 RA2IN
DIP
5kΩ
5kΩ
MAX247 FUNCTIONAL DESCRIPTION
9 RECEIVERS
4 A-SIDE RECEIVERS
5 B-SIDE RECEIVERS (RB5 ALWAYS ACTIVE)
8 TRANSMITTERS
4 A-SIDE TRANSMITTERS
4 B-SIDE TRANSMITTERS
4 CONTROL PINS
ENABLE RECEIVER A-SIDE (ENRA)
ENABLE RECEIVER B-SIDE (ENRB)
ENABLE RECEIVER A-SIDE (ENTA)
ENABLE RECEIVERr B-SIDE (ENTB)
RB2OUT 32
9 RA2OUT
RB3IN 27
14 RA3IN
5kΩ
5kΩ
RB3OUT 33
8 RA3OUT
RB4IN 26
15 RA4IN
5kΩ
5kΩ
RB4OUT 34
7 RA4OUT
11 ENRA
GND
20
Figure 23. MAX247 Pin Configuration and Typical Operating Circuit
32
______________________________________________________________________________________
ENRB 30
+5V-Powered, Multichannel RS-232
Drivers/Receivers
MAX220–MAX249
TOP VIEW
+5V
1µF
1µF
20
TA1OUT
TB1OUT
6
5
4
3
2
1
44 43 42 41 40
1µF
RB4IN
TA2OUT
TA4OUT
TA3OUT
TB3OUT
TA4OUT
TB2OUT
RA3IN
RA4IN
21
1µF
C1+
23 C124
C2+
25 C2-
VCC
+5V TO +10V VOLTAGE DOUBLER
V+
V-
+5V
1 TA1OUT
39 RB3IN
RA1IN
8
38 RB2IN
ENRA
9
37 RB1IN
RA1OUT
10
36 ENRB
RA2OUT
11
35 RB1OUT
RA3OUT
12
RA4OUT
13
33 RB3OUT
TA1IN
14
32 RB4OUT
TA2IN
15
31 TB1IN
TA3IN
16
30 TB2IN
34 RB2OUT
29 TB3IN
TB4IN
ENTB
V-
C2-
C2+
C1-
V+
VCC
19 20 21 22 23 24 25 26 27 28
C1+
18
GND
17
ENTA
TA4IN
MAX248
PLCC
TB1OUT 44
400kΩ
14 TA1IN
TB1IN 31
+5V
+5V
2 TA2OUT
TB2OUT 43
400kΩ
15 TA2IN
TB2IN 30
+5V
+5V
TB3OUT 42
3 TA3OUT
400kΩ
TB3IN 29
16 TA3IN
+5V
+5V
4 TA4OUT
TB4OUT 41
400kΩ
17 TA4IN
TB4IN 28
8 RA1IN
RB1IN 37
5kΩ
5kΩ
MAX248 FUNCTIONAL DESCRIPTION
8 RECEIVERS
4 A-SIDE RECEIVERS
4 B-SIDE RECEIVERS
8 TRANSMITTERS
4 A-SIDE TRANSMITTERS
4 B-SIDE TRANSMITTERS
4 CONTROL PINS
ENABLE RECEIVER A-SIDE (ENRA)
ENABLE RECEIVER B-SIDE (ENRB)
ENABLE RECEIVER A-SIDE (ENTA)
ENABLE RECEIVER B-SIDE (ENTB)
1µF
ENTB 27
+5V
7
26
+10V TO -10V VOLTAGE INVERTER
18 ENTA
RA2IN
22
RB1OUT 35
10 RA1OUT
RB2IN 38
7 RA2IN
5kΩ
5kΩ
RB2OUT 34
11 RA2OUT
RB3IN 39
6 RA3IN
5kΩ
5kΩ
RB3OUT 33
12 RA3OUT
RB4IN 40
5 RA4IN
5kΩ
5kΩ
13 RA4OUT
9 ENRA
RB4OUT 32
GND
19
ENRB 36
Figure 24. MAX248 Pin Configuration and Typical Operating Circuit
______________________________________________________________________________________
33
MAX220–MAX249
+5V-Powered, Multichannel RS-232
Drivers/Receivers
+5V
TOP VIEW
1µF
1µF
20
3
2
1
44 43 42 41 40
RB5IN
4
1µF
RB4IN
TB1OUT
TB3OUT
TA1OUT
TB2OUT
TA2OUT
5
RA5IN
6
TA3OUT
RA3IN
RA4IN
21
1µF
VCC
+5V TO +10V VOLTAGE DOUBLER
C1+
23 C124
C2+
25 C2-
V+
V-
+5V
TB1OUT 44
1 TA1OUT
39 RB3IN
RA1IN
8
38 RB2IN
ENRA
9
37 RB1IN
RA1OUT
10
36 ENRB
RA2OUT
11
35 RB1OUT
RA3OUT
12
RA4OUT
13
33 RB3OUT
RA5OUT
14
32 RB4OUT
MAX249
34 RB2OUT
TA1IN
15
31 RB5OUT
TA2IN
16
30 TB1IN
29 TB2IN
TB3IN
ENTB
V-
C2-
C2+
V+
C1-
VCC
19 20 21 22 23 24 25 26 27 28
C1+
18
GND
17
ENTA
TA3IN
PLCC
400kΩ
TB1IN 30
15 TA1IN
+5V
+5V
TB2OUT 43
2 TA2OUT
400kΩ
TB2IN 29
16 TA2IN
+5V
+5V
TB3OUT 42
3 TA3OUT
400kΩ
17 TA3IN
TB3IN 28
8 RA1IN
RB1IN 37
5kΩ
5kΩ
RB1OUT 35
10 RA1OUT
RB2IN 38
7 RA2IN
5kΩ
5kΩ
MAX249 FUNCTIONAL DESCRIPTION
10 RECEIVERS
5 A-SIDE RECEIVERS
5 B-SIDE RECEIVERS
6 TRANSMITTERS
3 A-SIDE TRANSMITTERS
3 B-SIDE TRANSMITTERS
4 CONTROL PINS
ENABLE RECEIVER A-SIDE (ENRA)
ENABLE RECEIVER B-SIDE (ENRB)
ENABLE RECEIVER A-SIDE (ENTA)
ENABLE RECEIVER B-SIDE (ENTB)
RB2OUT 34
11 RA2OUT
RB3IN 39
6 RA3IN
5kΩ
5kΩ
RB3OUT 33
12 RA3OUT
RB4IN 40
5 RA4IN
5kΩ
5kΩ
RB4OUT 32
13 RA4OUT
RB5IN 41
4 RA5IN
5kΩ
5kΩ
RB5OUT 31
14 RA5OUT
9 ENRA
GND
19
Figure 25. MAX249 Pin Configuration and Typical Operating Circuit
34
1µF
ENTB 27
+5V
7
26
+10V TO -10V VOLTAGE INVERTER
18 ENTA
RA2IN
22
______________________________________________________________________________________
ENRB 36
+5V-Powered, Multichannel RS-232
Drivers/Receivers
MAX222CPN
PART
TEMP RANGE
0°C to +70°C
18 Plastic DIP
PIN-PACKAGE
PART
MAX232AC/D
TEMP RANGE
0°C to +70°C
PIN-PACKAGE
Dice*
MAX222CWN
0°C to +70°C
18 Wide SO
MAX232AEPE
-40°C to +85°C
16 Plastic DIP
MAX222C/D
0°C to +70°C
Dice*
MAX232AESE
-40°C to +85°C
16 Narrow SO
MAX222EPN
-40°C to +85°C
18 Plastic DIP
MAX232AEWE
-40°C to +85°C
16 Wide SO
MAX222EWN
-40°C to +85°C
18 Wide SO
MAX232AEJE
-40°C to +85°C
16 CERDIP
MAX222EJN
-40°C to +85°C
18 CERDIP
MAX232AMJE
-55°C to +125°C
16 CERDIP
MAX222MJN
-55°C to +125°C
18 CERDIP
MAX232AMLP
-55°C to +125°C
20 LCC
MAX223CAI
0°C to +70°C
28 SSOP
MAX233CPP
0°C to +70°C
20 Plastic DIP
MAX223CWI
0°C to +70°C
28 Wide SO
MAX233EPP
-40°C to +85°C
20 Plastic DIP
MAX223C/D
0°C to +70°C
Dice*
MAX233ACPP
0°C to +70°C
20 Plastic DIP
MAX223EAI
-40°C to +85°C
28 SSOP
MAX233ACWP
0°C to +70°C
20 Wide SO
MAX223EWI
-40°C to +85°C
28 Wide SO
MAX233AEPP
-40°C to +85°C
20 Plastic DIP
MAX225CWI
0°C to +70°C
28 Wide SO
MAX233AEWP
-40°C to +85°C
20 Wide SO
MAX225EWI
-40°C to +85°C
28 Wide SO
MAX234CPE
0°C to +70°C
16 Plastic DIP
MAX230CPP
0°C to +70°C
20 Plastic DIP
MAX234CWE
0°C to +70°C
16 Wide SO
MAX230CWP
0°C to +70°C
20 Wide SO
MAX234C/D
0°C to +70°C
Dice*
MAX230C/D
0°C to +70°C
Dice*
MAX234EPE
-40°C to +85°C
16 Plastic DIP
MAX230EPP
-40°C to +85°C
20 Plastic DIP
MAX234EWE
-40°C to +85°C
16 Wide SO
-40°C to +85°C
16 CERDIP
16 CERDIP
MAX230EWP
-40°C to +85°C
20 Wide SO
MAX234EJE
MAX230EJP
-40°C to +85°C
20 CERDIP
MAX234MJE
-55°C to +125°C
MAX230MJP
-55°C to +125°C
20 CERDIP
MAX235CPG
0°C to +70°C
24 Wide Plastic DIP
MAX231CPD
0°C to +70°C
14 Plastic DIP
MAX235EPG
-40°C to +85°C
24 Wide Plastic DIP
MAX231CWE
0°C to +70°C
16 Wide SO
MAX235EDG
-40°C to +85°C
24 Ceramic SB
0°C to +70°C
14 CERDIP
MAX235MDG
-55°C to +125°C
24 Ceramic SB
MAX231C/D
0°C to +70°C
Dice*
MAX236CNG
0°C to +70°C
24 Narrow Plastic DIP
MAX231EPD
-40°C to +85°C
14 Plastic DIP
MAX236CWG
0°C to +70°C
24 Wide SO
MAX231EWE
-40°C to +85°C
16 Wide SO
MAX236C/D
0°C to +70°C
Dice*
MAX231EJD
-40°C to +85°C
14 CERDIP
MAX236ENG
-40°C to +85°C
24 Narrow Plastic DIP
14 CERDIP
MAX236EWG
-40°C to +85°C
24 Wide SO
MAX231CJD
MAX231MJD
-55°C to +125°C
MAX232CPE
0°C to +70°C
16 Plastic DIP
MAX236ERG
-40°C to +85°C
24 Narrow CERDIP
MAX232CSE
0°C to +70°C
16 Narrow SO
MAX236MRG
-55°C to +125°C
24 Narrow CERDIP
MAX232CWE
0°C to +70°C
16 Wide SO
MAX237CNG
0°C to +70°C
24 Narrow Plastic DIP
MAX232C/D
0°C to +70°C
Dice*
MAX237CWG
0°C to +70°C
24 Wide SO
MAX232EPE
-40°C to +85°C
16 Plastic DIP
MAX237C/D
0°C to +70°C
Dice*
MAX232ESE
-40°C to +85°C
16 Narrow SO
MAX237ENG
-40°C to +85°C
24 Narrow Plastic DIP
MAX232EWE
-40°C to +85°C
16 Wide SO
MAX237EWG
-40°C to +85°C
24 Wide SO
MAX232EJE
-40°C to +85°C
16 CERDIP
MAX237ERG
-40°C to +85°C
24 Narrow CERDIP
MAX232MJE
-55°C to +125°C
16 CERDIP
MAX237MRG
-55°C to +125°C
24 Narrow CERDIP
MAX232MLP
-55°C to +125°C
20 LCC
MAX238CNG
0°C to +70°C
24 Narrow Plastic DIP
MAX232ACPE
0°C to +70°C
16 Plastic DIP
MAX238CWG
0°C to +70°C
24 Wide SO
MAX232ACSE
0°C to +70°C
16 Narrow SO
MAX238C/D
0°C to +70°C
Dice*
MAX232ACWE
0°C to +70°C
16 Wide SO
MAX238ENG
-40°C to +85°C
24 Narrow Plastic DIP
* Contact factory for dice specifications.
______________________________________________________________________________________
35
MAX220–MAX249
___________________________________________Ordering Information (continued)
MAX220–MAX249
+5V-Powered, Multichannel RS-232
Drivers/Receivers
___________________________________________Ordering Information (continued)
MAX238EWG
PART
-40°C to +85°C
TEMP RANGE
24 Wide SO
PIN-PACKAGE
PART
MAX243CPE
TEMP RANGE
0°C to +70°C
PIN-PACKAGE
16 Plastic DIP
MAX238ERG
-40°C to +85°C
24 Narrow CERDIP
MAX243CSE
0°C to +70°C
16 Narrow SO
MAX238MRG
-55°C to +125°C
24 Narrow CERDIP
MAX243CWE
0°C to +70°C
16 Wide SO
MAX239CNG
0°C to +70°C
24 Narrow Plastic DIP
MAX243C/D
0°C to +70°C
Dice*
MAX239CWG
0°C to +70°C
24 Wide SO
MAX243EPE
-40°C to +85°C
16 Plastic DIP
MAX239C/D
0°C to +70°C
Dice*
MAX243ESE
-40°C to +85°C
16 Narrow SO
MAX239ENG
-40°C to +85°C
24 Narrow Plastic DIP
MAX243EWE
-40°C to +85°C
16 Wide SO
MAX239EWG
-40°C to +85°C
24 Wide SO
MAX243EJE
-40°C to +85°C
16 CERDIP
MAX239ERG
-40°C to +85°C
24 Narrow CERDIP
MAX243MJE
-55°C to +125°C
16 CERDIP
MAX239MRG
-55°C to +125°C
24 Narrow CERDIP
MAX244CQH
0°C to +70°C
44 PLCC
MAX240CMH
0°C to +70°C
44 Plastic FP
MAX244C/D
0°C to +70°C
Dice*
MAX240C/D
0°C to +70°C
Dice*
MAX244EQH
-40°C to +85°C
MAX241CAI
0°C to +70°C
28 SSOP
MAX245CPL
0°C to +70°C
40 Plastic DIP
0°C to +70°C
28 Wide SO
MAX245C/D
0°C to +70°C
Dice*
MAX241C/D
0°C to +70°C
Dice*
MAX245EPL
-40°C to +85°C
40 Plastic DIP
MAX241EAI
-40°C to +85°C
28 SSOP
MAX246CPL
0°C to +70°C
40 Plastic DIP
MAX241EWI
-40°C to +85°C
28 Wide SO
MAX246C/D
0°C to +70°C
Dice*
20 SSOP
MAX246EPL
-40°C to +85°C
40 Plastic DIP
0°C to +70°C
40 Plastic DIP
Dice*
MAX241CWI
MAX242CAP
0°C to +70°C
44 PLCC
MAX242CPN
0°C to +70°C
18 Plastic DIP
MAX247CPL
MAX242CWN
0°C to +70°C
18 Wide SO
MAX247C/D
0°C to +70°C
MAX242C/D
0°C to +70°C
Dice*
MAX247EPL
-40°C to +85°C
MAX242EPN
-40°C to +85°C
18 Plastic DIP
MAX248CQH
0°C to +70°C
44 PLCC
MAX242EWN
-40°C to +85°C
18 Wide SO
MAX248C/D
0°C to +70°C
Dice*
40 Plastic DIP
MAX242EJN
-40°C to +85°C
18 CERDIP
MAX248EQH
-40°C to +85°C
44 PLCC
MAX242MJN
-55°C to +125°C
18 CERDIP
MAX249CQH
0°C to +70°C
44 PLCC
MAX249EQH
-40°C to +85°C
44 PLCC
* Contact factory for dice specifications.
Package Information
For the latest package outline information, go to
www.maxim-ic.com/packages.
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
36 __________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600
© 2003 Maxim Integrated Products
Printed USA
is a registered trademark of Maxim Integrated Products.
This datasheet has been download from:
www.datasheetcatalog.com
Datasheets for electronics components.