Download THz & nmTransistors: Scaling Laws & State Density Limits. Mark Rodwell

Document related concepts
no text concepts found
Transcript
THz Seminar, UCSB, February 17, 2011
THz & nmTransistors:
Scaling Laws & State Density Limits.
Mark Rodwell
University of California, Santa Barbara
Ohmic Contacts:
A. Baraskar, A. C. Gossard UCSB
HBT
V. Jain, E. Lobisser, A. Baraskar, J. Rode, H.W. Chiang, B. J. Thibeault, UCSB
M. Urteaga, M. Seo, Z. Griffith, J. Hacker, R. Pierson, P. Rowell, B. Brar, Teledyne Scientific Company
III-V MOSFETs
A. Carter, J. Law, G. J. Burek, Y. Hwang, B. J. Thibeault, B. Mitchell, S. Stemmer, A. C. Gossard, C. Palmstrom, UCSB
E. Kim, P. C. McIntyre Stanford University
High-Current FET Channels:
P. Asbeck: University of California, San Diego
W. Frensley: University of Texas, Dallas
S. Steiger, A. Paul, S. Lee, Y. Tan, G. Hegde, G. Klimeck, Purdue University
T. Boykin University of Alabama, Huntsville
[email protected] 805-893-3244, 805-893-5705 fax
DC to daylight; far-infrared Integated Circuits
IR today→ lasers & bolometers → generate & detect
Far-infrared ICs: classical device physics, classical circuit design
L1
L2
Q7
Q9
Q8
L3
L4
DIVOUT
Q10
Q3,4
Q5,6
R6
R7
Q11
L5
RFIN
R3
R5
VEF
L6
Q1
C4
Q2
R4
R2
C3
C1
R1
C2
VEE
It's all about the interfaces: ...wire resistance,... ...& charge density.
contact and gate dielectrics...
...heat,...
band structure and
density of states !
Recent Results
(UCSB and Teledyne)
...just to get
the experimental stuff
out of the way....
UCSB : THz Bipolar Transistor
• 30nm emitter, 30nm base, 100nm collector
• Lifted-off Pt/Ti/Pd/Au base contacts
• Run 1: Optical lithography for base: fτ / fmax = 460 / 850 GHz
• Run 2: E-beam lithography for base: fτ / fmax ~ 480 / 1000 GHz
f
32
max
U
Gain (dB)
24
16
H
= 0.8, 1.0, 1.2 THz
f = 480 GHz

21
Aje = 0.22 x 2.7 m
2
Ic = 12.1 mA
8
Je = 20.4 mA/m2
P = 33.5 mW/m2
Vcb = 0.7 V
0
109
1010
1011
Frequency (Hz)
1012
(slides removed on unpublished 600 GHz IC results)
III-V MOSFETs with Source/Drain Regrowth
d
I (mA/um)
1
V = -1, 0, 1, 2, 3 V
gs
0.8
~300nm L ,
0.6
g
5.5nm Al O
2
3
0.4
0.2
0
0
0.5
1
1.5
V (Volts)
ds
27 nm InGaAs MOSFET
Transistor Scaling Laws
Simple Device Physics: Resistance
bulk resistance
R
 bulk  T
A
contact resistance
-perpendicular
R
 contact
A
contact resistance
- parallel
R
 contact
A
W'
  sheet 
3L
Good approximation for contact
widths less than 2 transfer lengths.
Simple Device Physics: Depletion Layers
capacitance
A
C 
T
transit time
T

2v
space-charge
limited current
I max 2v
 2 Vapplied  Vdepletion  2 
A
T
V
C

I C
where

T
I max Vapplied  Vdepletion  2
Simple Device Physics: Thermal Resistance
Exact
Carslaw & Jaeger 1959
Long, Narrow Stripe
HBT Emitter, FET Gate
1
1
L
Rth 
ln   
Kth L  W  Kth L
cylindrica l heat flow
spherical heat flow
near junction
far from junction
Square ( L by L )
IC on heat sink
1
L
Rth 
sinh 1  
Kth L
W 
1
W 

sinh 1  
KthW
L
Rth 
1
1

4 Kth L Kth L
planar heat flow spherical heat flow
near surface
far from surface
Simple Device Physics: Fringing Capacitance
C
W
    1.5  
L
T
parallel - plate
fringing
wiring capacitance
C/L
VLSI power-delay limits
slowly - varying function 
C
 

of
W
/
G
and
W
/
G
L
1
2


 (1 to 3)  
FET parasitic capacitances
C parasitic / L ~ 
FET scaling constraints
Electron Plasma Resonance: Not a Dominant Limit
T 1
Lkinetic 
A q2nm*
T
1
Rbulk 
A q2nm* m
dielectric relaxation frequency scattering frequency
1 Rbulk
1 / 2
f scattering 
f dielectric 
2 Lkinetic
Cdisplacement Rbulk

n - InGaAs
1 
2 

Cdisplacement 
7  10 / cm
19
3
T
plasma frequency
1 / 2
f plasma 
LkineticCdisplacement
1
2 m
800 THz
7 THz
74 THz
80 THz
12 THz
31 THz
3.5  1019 / cm 3
p - InGaAs
A
Transistor Design: State Density Effects
1-D
E-K
2-D
3-D
E f  k 2f / m  k f  m1/ 2 E1f / 2
v f  k f / m  E1f / 2 / m1/ 2
velocity
density
n  k 1f  (mE f )1/ 2
capacitance
Q
 m1/ 2 E f 1/ 2
E f
Q
 m1 E 0f
E f
Q
 m3 / 2 E1f / 2
E f
current
J  nv f  m0 E1f
J  m1/ 2 E 3f / 2
J  m1E 2f
conductivity
J
 m0 E 0f  m0 n 0
E f
J
 m1/ 2 E1f / 2  m0 n1/ 2
E f
J
 m1 E1f  m0 n 2 / 3
E f
n  k 2f  (m E f )1
n  k 3f  (mE f )3 / 2
Transistor Design: State Density Effects
1-D
E-K
2-D
3-D
E f  k 2f / m  k f  m1/ 2 E1f / 2
v f  k f / m  E1f / 2 / m1/ 2
velocity
density
n  k 1f  m1/ 2 E1f / 2
n  k 2f  m1E1f
n  k 3f  m3 / 2 E 3f / 2
capacitance
Q
 m1/ 2 E f 1/ 2
E f
Q
 m1 E 0f
E f
Q
 m3 / 2 E1f / 2
E f
current
J  nv f  m0 E1f
J  m1/ 2 E 3f / 2
J  m1E 2f
conductivity
J
 m0 E 0f  m0 n 0
E f
J
 m1/ 2 E1f / 2  m0 n1/ 2
E f
J
 m1 E1f  m0 n 2 / 3
E f
Transistor Design: State Density Effects
1-D
2-D
3-D
E-K
velocity
density
"capacitance"
1
Q/l   2m*qV f

current
q
I
Ef

conductivity
q2


 sheet
q 2 m*

Vf
2
2
23 / 2 qm * E 3f / 2
1/ 2
J sheet 
( E f and V f  E f /q both measured relative to Ec )
3 2 2
J
qm * E 2f
4 2  3
 q2   3 
 c      
    8 
2/3
 n2 / 3
FET Design
g m  Cg ch  (v / Lg )
gate width W 
g
Cgd  Cgs, f  Wg
Cg ch 
LgWg
Tox /  ox  Twell / 2 well  (2 2 / q 2 ) / gm *
 voltage division ratio between  1
 
v  
 the above three capacitors  m *
RDS  Lg /(Wg v )
RS  RD 
 contact
LS/DWg
FET Design: Scaling
g m  Cg ch  (v / Lg )
gate width W 
g
Cgd  Cgs, f  Wg
Cg ch 
LgWg
Tox /  ox  Twell / 2 well  (2 2 / q 2 ) / gm *
 voltage division ratio between  1
 
v  
 the above three capacitors  m *
RDS  Lg /(Wg v )
RS  RD 
 contact
LS/DWg
Bipolar Transistor Design
We
Tb
 b  T 2Dn
2
b
Wbc
Tc
 c  Tc 2v sat
Ccb  Ac /Tc
I c ,max  vsat Ae (Vce,operating  Vce,punch-through) / T
2
c
P
T 
LE

 Le 
1  ln  
 We 

Rex  contact/Ae
 We Wbc   contact
 
Rbb  sheet 

 12 Le 6 Le  Acontacts
emitter length LE 
Bipolar Transistor Design: Scaling
We
Tb
 b  T 2Dn
2
b
Wbc
Tc
 c  Tc 2v sat
Ccb  Ac /Tc
I c ,max  vsat Ae (Vce,operating  Vce,punch-through) / T
2
c
P
T 
LE

 Le 
1  ln  
 We 

Rex  contact/Ae
 We Wbc   contact
 
Rbb  sheet 

 12 Le 6 Le  Acontacts
emitter length LE 
Changes required to double transistor bandwidth
We
emitter length LE 
HBT parameter
emitter & collector junction widths
current density (mA/m2)
current density (mA/m)
collector depletion thickness
base thickness
emitter & base contact resistivities
change
decrease 4:1
increase 4:1
constant
decrease 2:1
decrease 1.4:1
decrease 4:1
nearly constant junction temperature → linewidths vary as (1 / bandwidth) 2
LG
gate width WG 
constant voltage, constant velocity scaling
FET parameter
gate length
current density (mA/m), gm (mS/m)
channel 2DEG electron density
gate-channel capacitance density
dielectric equivalent thickness
channel thickness
channel density of states
source & drain contact resistivities
change
decrease 2:1
increase 2:1
increase 2:1
increase 2:1
decrease 2:1
decrease 2:1
increase 2:1
decrease 4:1
fringing capacitance does not scale → linewidths scale as (1 / bandwidth )
THz & nm Transistors: it's all about the interfaces
Metal-semiconductor interfaces (Ohmic contacts):
very low resistivity
Dielectric-semiconductor interfaces (Gate dielectrics):
very high capacitance density
THz & nm Transistors: it's all about heat
Transistor
Self-heating
IC power density
wire length  1 circuit bandwidth 
 IC area  1 circuit bandwidth 
2
P
L
T ~
ln  
K th L  W 
PIC
T 
K th L
THz & nm Transistors: it's all about state density
Density of states limit to contact resistivity
    8 
1
 c   2      2 / 3  0.1   m 2
n
q   3 
for n  carrier concentration  7 1019 / cm 3 .
2/3
Density of states limit to current in 3-D transistors (HBTs)

mA  m*  E f  Ec   mA  E f  Ec 
   65

 g  

J   80,000
2 
2 

m
m
1
eV

m
0
.
1
eV



 

0 
for an InP emitter (m * / m0  0.08)
2
2
Density of states limit to current in 2-D transistors (FETs)
1/ 2
 E f  Ec 


 1 eV 
for an InGaAs channel (m* /m0  0.04)
 mA  m* 
 g  
I d / Wg   84
 m  m0 
3/ 2
 mA  E f  Ec 


 17
 m  1 eV 
3/ 2
Bipolar Transistor
Technology
UCSB 128 nm InP HBT Process
V. Jain
E. Lobisser
J. Rode
H.W. Chan
Other Serious Scaling Challenges
J(mA/um^2)
Transonductance drops
due to degenerate injection
10
2
10
1
10
0
10
-1
10
-2
10
-3
Rodwell
Lundstrom
Jain.
Fermi-Dirac
Boltzmann
Equivalent series
resistance approximation
-0.3
-0.2
-0.1
V -
0
0.1
0.2
be
Highly degenerate limit
J
Even zero-barrier Ohmic contacts have resistance
qm * ( E f  Ec ) 2
4 2  3
 mA  E f  Ec 


  65
2 
 m  0.1 eV 
2
for InP emitter (m* /m0  0.08).
Barrier quantum reflection
makes this worse.
Zero - barrier contact resistivity :
    8 
1 1
 c   2      2  2 / 3
T n
q   3 
n  carrier concentration
2/3
T  transmission coefficien t
 c  0.1   m 2 at n  7 1019 / cm 3 .
Ohmic Contacts
Conventional ex-situ contacts are a mess
THz transistor bandwidths: very low-resistivity contacts are required
textbook contact
with surface oxide
with metal penetration
Interface barrier → resistance
Further intermixing during high-current operation → degradation
Benefits of refractory base contacts
15 nm Pd/Ti diffusion
100 nm InGaAs grown in MBE
30 nm Mo
After 250°C anneal, Pd/Ti/Pd/Au diffuses 15nm into semiconductor
deposited Pd thickness: 2.5nm
base now 30 nm thick: observed to degrade with thinner bases
Refractory Mo contacts do not diffuse measurably
Refractory, non-diffusive metal contacts for thin base semiconductor
A.. Baraskar
Ohmic Contacts: to N type InAs
-6
Theory : zero - barrier, state - limited transport
Theory, R = 0
2
Contact Resistivity (cm )
10
 qn( E )v( E ) F ( E )dE at interface
Theory, R = 0.54
F ( E )  Fermi - Dirac distribution,
-7
10
n  density, v  velocity
Experimental zero barrier implies 100% tunneling probability
R  interface quantum reflection
-8
10
For metal - InGaAs interface, R  54% .
Landauer limit
At T  0, R  0, this becomes (Landauer)
-9
10
16
10
17
18
19
20
10
10
10
10
-3
Electron concentration (cm )
    8 
 c   2    
q   3 
2/3

1
ne2 / 3
 1 
If tunneling dominates :  C  exp 

n


InAs data is consistent with zero - interface barrier, interface reflection .
InAs data is the lowest reported for III - V contacts
Ohmic Contacts: to N type InGaAs
-6
Theory
(R = 0.44)
2
Contact Resistivity (cm )
10
Theory : State - limited conductance
Experimental
(tunneling limited)
with 100% tunneling probability
-7
10
Data suggests :
Theory
(R = 0)
tunneling dominates contact resistance,
except at the highest measured doping.
-8
10
Landauer limit
 1 

 n
 C ,tunneling  exp 
-9
10
16
10
17
18
19
20
10
10
10
10
-3
Electron concentration (cm )
InGaAs contacts are sufficient for 64 nm node.
Increased doping should rapidly reduce C .
Ohmic Contacts: Ptype to InGaAs
-6
Theory : State - limited conductance
2
Contact Resistivity (cm )
10
with 100% tunneling probability
-7
10
Data again suggests :
-8
10
Theory
Experimental: Ir contacts
Experimental: W contacts
Experimental: Mo contacts
Landauer
-9
10
-10
10
tunneling dominates contact resistance,
except at the highest measured doping.
17
10
18
19
 1 

 n
 C ,tunneling  exp 
20
10
10
10
-3
Hole Concentration (cm )
InGaAs contacts are sufficient for 64 nm node.
Increased doping should rapidly reduce C .
THz III-V FETs / HEMTs
and
nm III-V MOSFETs
10 nm / 3 THz III-V FETs: Challenges & Solutions
To double the bandwidth:
gate dielectric:
decrease EOT 2:1
S/D access regions:
decrease resistivity 2:1
channel: keep same velocity, but
thin channel 2:1
increase density of states 2:1
Thin, high current density III-V FET channels
InGaAs, InAs FETs
THz & VLSI need high current
low m*→ high velocities
FET scaling for speed requires increased charge density
low m* →low charge density
Density of states bottleneck (Fischetti TED 2001, Solomon & Laux IEDM 2001)
→ For < 0.6 nm EOT, silicon beats III-Vs
Open the bottle !
low transport mass → high vcarrier
multiple valleys or anistropic valleys → high DOS
Use the L valleys.
Semiconductor Capacitances Must Also Scale
(Vgs  Vth )
cox
(unidirecti onal motion)
cdepth   / Tinversion
( E f  Ewell ) / q
cdos  q2 gm* / 22
channel charge  qns  cdos(V f  Vwell )  q( E f  Ewell )  ( gm* / 22 )
Inversion thickness & density of states must also both scale.
Rodwell, DRC 2010
Calculating Current: Ballistic Limit
Channel Fermi voltage  voltage applied to cdos
Natori
determines Fermi velocity v f through E f  qV f  m * v 2f / 2
mean electron velocity  v  (4 / 3 )v f
Channel charge : s  cdos V f  Vc  
cdoscequiv
cequiv  cdos
V
cdos  q2 gm * / 22  cdos,o  g  (m * / mo ) , where g is the # of band minima
 mA 
 Vgs  Vth 
g  (m * / mo )1 / 2
 J   84


3/ 2 


m
1
V

 1  (cdos,o / cox )  g  (m * / mo ) 

3/ 2
Do we get highest current with high or low mass ?
gs
 Vth 
Drive current versus mass, # valleys, and EOT
 mA   Vgs  Vth 

  
J  K1   84
 m   1 V 
normalized drive current K
1
0.35
3/ 2
, where K1 
InGaAs <--> InP
1  (c

g  m* mo
1/ 2
*
dos,o / cequiv )  g  ( m / mo )
Si

3/ 2
g=2
g=1
0.3
cequiv  ( 1/cox  1/cdepth )1
0.25
 εSiO2 /EOT
0.2
0.3 nm
0.4 nm
0.15
0.1
0.05

0.6 nm
EOT includes the wavefunction depth term
(mean wavefunction depth* SiO2 /semiconductor )
0
0.01
EOT=1.0 nm
0.1
m*/m
1
o
InGaAs MOSFETs: superior Id to Si at large EOT.
InGaAs MOSFETs: inferior Id to Si at small EOT.
Fischetti / Solomon / Laux Density-of-States-Bottleneck → III-V loses to Si.
III-V Band Properties, normal {100} Wafer

 valley
GaAs
Si
X valley
L valley
ml / mo
mt / mo
E x  E
ml / mo
mt / mo
E L  E
1.29
0.19
0.83 eV
1.23
0.062
0.47 eV
0.067
1.13
1.30
0.16
0.22
0.87 eV
0.47 eV
0.65
1.90
0.050
0.075
0.57 eV
0.28 eV
---
0.92
0.19
(negative)
material
substrate m* / mo
material
substrate
0.045
In 0.5Ga 0.5As InP
0.026
InAs
InP
GaAs
Si
L
X
L - valley transverse masses are comparable to  valleys
Consider instead: valleys in {111} Wafer

 valley
GaAs
Si
X valley
L valley
ml / mo
mt / mo
E x  E
ml / mo
mt / mo
E L  E
1.29
0.19
0.83 eV
1.23
0.062
0.47 eV
0.067
1.13
1.30
0.16
0.22
0.87 eV
0.47 eV
0.65
1.90
0.050
0.075
0.57 eV
0.28 eV
---
0.92
0.19
(negative)
material
substrate m* / mo
material
substrate
0.045
In 0.5Ga 0.5As InP
0.026
InAs
InP
GaAs
Si
L
X
Orientation : one L valley has high vertical mass
X valleys & three L valleys have moderate vertical mass
Valley in {111} wafer: with quantization in thin wells

 valley
GaAs
Si
X valley
L valley
ml / mo
mt / mo
E x  E
ml / mo
mt / mo
E L  E
1.29
0.19
0.83 eV
1.23
0.062
0.47 eV
0.067
1.13
1.30
0.16
0.22
0.87 eV
0.47 eV
0.65
1.90
0.050
0.075
0.57 eV
0.28 eV
---
0.92
0.19
(negative)
material
substrate m* / mo
material
substrate
0.045
In 0.5Ga 0.5As InP
0.026
InAs
InP
GaAs
Si
L
X
Selects L[111] valley; low transverse mass
{111}
-L FET: Candidate Channel Materials
 valley
material
material
m* / mo
In
material
0.5Ga
0.5As
In
Ga
0.045
0.5
0.5As
GaAs
GaAs
0.067
GaSb
GaSb
0.039
Ge
/m
mm
l /l mo o
1.23
1.23
valley
LLvalley
/ m EEL LEE
mm
t /t mo o

0.062 0.47
0.47eV
eV
0.062
1.90
1.90
1.30
1.30
1.58
0.075
0.075
0.10
0.10
0.08
0.28eV
eV
0.28
0.07eV
eV
0.07
(negative)
Well thickness for
  L alignment
1 nm (?)
2 nm
4 nm
---
=0 eV
L=177 meV
X[100]= 264 meV
X[010] = 337 meV
Wavefunctions
3 nm GaAs well
AlSb barriers
Energy, eV
Standard III-V FET:  valley in [100] orientation
2
1.5
1
0.5
0
-0.5
-1


-1
X[010]
X[100]
L

L
1st Approach: Use both  and L valleys in [111]
2.3 nm GaAs well
AlSb barriers
[111] orientation
-1
X
L[111]
L[111]

L[111]
= 41 meV
L[111] (1)= 0 meV
L[111] (2)= 84 meV
L[111] , etc. =175 meV
X=288 meV
-1
L[111]

Drive current vs. mass, # valleys, and EOT
 mA   Vgs  Vth 

  
J  K1   84
 m   1 V 
normalized drive current K
1
0.35
3/ 2
, where K1 
{111} -L channels
1  (c
1/ 2
g=2
g=1
0.3 InGaAs...InP
 channels
0.25
0.3 nm
0.4 nm
0.15
0.1
0.05

*
dos,o / cequiv )  g  ( m / mo )
Si
0.2

g  m* mo
0.6 nm
EET=Equivalent Electrostatic Thickness
=T 
/ +T

/
ox SiO2
0
0.01
ox
inversion SiO2
semiconductor
0.1
m*/m
EET=1.0 nm
1
o
Isotropic bands : transport in either
 valley, L [111] valley on (111) oriented surface
or X [100] ,  [100] or  [1 00] valleys on (100) oriented surface

3/ 2
Transit delay vs. mass, # valleys, and EOT
1/ 2
Lg
 m* 

  1 Volt 
Qch
 where K 2   
  
 ch 
 K 2  
7
m 


ID
2
.
52

10
cm/s
V

V

  gs th 
 0
EET=1.0 nm
1.5
ox SiO2
ox
inversion SiO2
1 nm
0.4 nm
0.6 nm
0.4 nm
semiconductor
Si
1
{111} -L
channels
1/ 2
* 
 cdos,o
m
 1 
g 

ceq
mo 

0.6 nm
EET=Equivalent Electrostatic Thickness
=T 
/ +T

/
2
Normalized transit delay K
1/ 2
g=1, isotropic bands
0.5
g=2, isotropic bands
InGaAs...InP
 channels
0
0
0.05
0.1
0.15
0.2
0.25
m*/m
Isotropicbands : transport in either
 valley, L [111] valley on (111) oriented surface
0.3
0.35
0.4
o
or X [100] ,  [100] or  [ 1 00] valleys on (100) oriented surface
 2.52  107 cm/s   Vgs  Vth 
  
vinjection  

K
1
Volt


2


1/ 2
2nd Approach: Use L valleys in Stacked Wells
Three 0.66 nm GaAs wells
0.66 nm AlSb barriers
[111] orientation
L[111](1) = 0 meV
L[111](2)= 61 meV
L[111](3)= 99 meV
=338 meV
L[111], etc =232 meV
X=284 meV

X
L[111]
L[111]
-1
All
L[111]
-1
High-Current L & -L channels: 6 Approaches
Rodwell et al, 2010 Device Research Conference 6/21/2010
0.1
EET=1.0 nm
0.1
m*/m
1 {111} -L
channels
Si
InGaAs...InP
 channels
0
0.1
all curves: g=2
0
0.01
0.1
m /m
t
g=1
g=2
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
m*/m
o
0
0.3 nm
EET=1.0 nm
o
0.5
0
l
0.2
1
EET=1.0 nm 0.6 nm
1 nm
0.4 nm
0.6 nm
0.4 nm
isotropic in-plane
transport
0.3
1.5 g=2
1
1
GaSb
GaAs
m /m =1.23
l
0
m /m =1.3
l
0
m /m =1.58
l
0
m /m =1.9
0.5
Ge
InGaAs
l
0
0
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
m /m
t
o
l
0
all curves: g=4
0.6 nm
0.2
0.1
EET=1.0 nm
0
0.01
o
0.6 nm
0.3 nm
0.4 nm
0.3
1
EET=1.0 nm
m /m =1.23 (InGaAs)
l
0
m /m =1.3 (GaSb)
l
0
m /m =1.58 (Ge)
l
0
m /m =1.9 (GaAs)
0.3 nm
0.4
2
1.5
InGaAs...InP
 channels
0.6 nm
0.5
0.1
m /m
t
3 g=4
Drain current, mA/m
0.4 nm
0.6 nm
0.4
normalized drive current K
0.15
m /m =1.23
l
0
m /m =1.3
l
0
m /m =1.58
l
0
m /m =1.9
0.4 nm
normalized transit delay K
1
0.3 nm
0.2
0.05 g=1
g=2
0
0.01
0.5
normalized drive current K
{100} Si
0.25
2
Normalized transit delay K
{111} -L channels
0.3
2
0.35
normalized transit delay K
normalized drive current K
1
red = occupied
blue = vacant
1
o
EET=1.0 nm
0.6 nm
2.5
0.3 nm
2
GaSb
GaAs
1.5
m /m =1.23
l
0
m /m =1.3
l
0
m /m =1.58
l
0
m /m =1.9
1
Ge
InGaAs
0.5
l
0
0
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
m /m
t
o
8
2.5 nm well pitch
7
0.3 nm EET
0.6 nm EET
6
5
4
3
5 nm well pitch
2
V
-V =0.3 V
1
gs
th
0
0.01
0.1
1
m*/mo
 mA   Vgs  Vth 

  
J  K1   84
 m   1 V 
3/ 2
2.52 107 cm/s  Vgs  Vth 

 
K2
 1 Volt 
1/ 2
vinjection 
3rd Approach: High Current Density L-Valley MQW FINFETs
8
2.5 nm well pitch
Drain current, mA/m
7
6
V -V =0.3 V
gs
5
3
5 nm well pitch
2
1 EOT includes wavefunction depth term
0
0.01
 2 2 2
i
2m*W 2
th
4
(mean wavefunction depth*
valley energies Emin,i  qVmin,i 
0.3 nm EOT
0.6 nm EOT
current I  
i
SiO2
/
0.1
m*/mo
semiconductor
)
1
gq 2
V f  Vmin,i  charge : Qch   gl  2m*qV f  Vmin,i  gate voltage :Vgs  V f  Qch / Cox

i
Concerns
Nonparabolic bands reduce bound state energies
Failure of effective mass approximation:1-2 nm wells
1-2 monolayer fluctuations in growth
→ scattering→ collapse in mobility
Purdue Confirmation
Purdue Confirmation
Steiger, Klimeck, Boykin
Ryu, Lee, Hegde, Tan
THz FET scaling: with & without increased DOS
Gate length
nm
Gate barrier EOT nm
well thickness
S/D resistance
effective mass
# band minima
canonical
fixed DOS
stepped #
50
1.2
nm
8.0
m 210
*m0
0.05
1
1
1
35
0.83
25
0.58
18
0.41
13
0.29
9
0.21
5.7
150
0.05
4.0
100
0.05
2.8
74
0.08
2.0
53
1.4
37
0.08
0.08
1.4
1
1
2
1
1
2.8
1
2
4
1
3
5.7
1
3
3000
2500
f
4000
2500
max
1500
3500
3000
fmax
2000
f

f , GHz
2000
canonical scaling
stepped # of bands
 transport only
, GHz
Scaled FET performance: fixed vs. increasing DOS
1500
1000
500
500
0
2.5
0
1000
SCFL static divider clock rate, GHz
drain current density, mA/m
1000
mA/m→ VLSI metric
2
1.5
1
0.5
200 mV gate overdrive
0
0
10
20
30
40
gate length, nm
50
60
SCFL divider speed
800
600
400
200
0
0
10
20
30
40
gate length, nm
50
Increased density of states needed for high drive current, fast logic @ 16, 11, 8 nm nodes
60
THz & nm
Transistors
DC to daylight; far-infrared Integated Circuits
IR today→ lasers & bolometers → generate & detect
Far-infrared ICs: classical device physics, classical circuit design
It's all about the interfaces: ...wire resistance,... ...& charge density.
contact and gate dielectrics...
...heat,...
band structure and
density of states !
(end)
III-V Fabrication Processes Must Change... Greatly
32 nm base & emitter contacts...self-aligned
32 nm emitter junctions
1 m2 contact resistivities
70 mA/m2 → refractory contacts
high-K dielectric replaces heterojunction
15 nm gate length
15 nm source / drain contacts...self-aligned
< 10 nm source / drain spacers (sidewalls)
1/2 m2 contact resistivities
3 mA/m → 200 mA/m2
contacts above ~ 5 nm N+ layer
→ refractory contacts !
670 GHz Transceiver Development: DARPA THz
transmitter
interconnects
receiver
circuits
R1
Lout2
VOUT
L1
R3
Lout1
Q5
Q3
Q4
LC3
Q9
R2
LC2
LE1
CVar
Q8
L3
L4
DIVOUT
R4
Q6
LB
Q1
Q7
Q10
LC1
Q2
Q3,4
R7
L5
RFIN
CVar
LE2
R5
RE
C2
Q5,6
R6
Q11
R4
R2
C1
R1
C2
C3
VBB
C4
Q2
VEE
VEE VTUNE
VEF
L6
Q1
R3
C1
L2
C3
Why Build THz Transistors ?
500 GHz digital logic
→ fiber optics
THz amplifiers→ THz radios
→ imaging, sensing,
communications
precision analog design
at microwave frequencies
→ high-performance receivers
Higher-Resolution
Microwave ADCs, DACs,
DDSs
Frequency Limits
and Scaling Laws
of (most)
Electron Devices
  thickness
C  area / thickness
Rtop   contact / area
Rbottom 
 contact
area

PIN photodiode
Rtop
Rbottom
 sheet width
4

length
I max, space-charge-limit  area / thickness 
2
power
 length 
T 
 log

length
 width 
To double bandwidth,
reduce thicknesses 2:1
Improve contacts 4:1
reduce width 4:1, keep constant length
increase current density 4:1
Related documents