Download a AN-423 APPLICATION NOTE •

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Ground (electricity) wikipedia , lookup

Stray voltage wikipedia , lookup

Ground loop (electricity) wikipedia , lookup

History of electric power transmission wikipedia , lookup

Variable-frequency drive wikipedia , lookup

Control system wikipedia , lookup

Power inverter wikipedia , lookup

Tube sound wikipedia , lookup

Electrical ballast wikipedia , lookup

Three-phase electric power wikipedia , lookup

Voltage optimisation wikipedia , lookup

Mains electricity wikipedia , lookup

Current source wikipedia , lookup

Alternating current wikipedia , lookup

Ohm's law wikipedia , lookup

Analog-to-digital converter wikipedia , lookup

Rectifier wikipedia , lookup

Voltage regulator wikipedia , lookup

Transformer wikipedia , lookup

Schmitt trigger wikipedia , lookup

Resistive opto-isolator wikipedia , lookup

Wien bridge oscillator wikipedia , lookup

Two-port network wikipedia , lookup

Power electronics wikipedia , lookup

Pulse-width modulation wikipedia , lookup

Power MOSFET wikipedia , lookup

Buck converter wikipedia , lookup

Switched-mode power supply wikipedia , lookup

Transformer types wikipedia , lookup

Current mirror wikipedia , lookup

Opto-isolator wikipedia , lookup

Transcript
a
ONE TECHNOLOGY WAY
• P.O.
AN-423
APPLICATION NOTE
BOX 9106
• NORWOOD,
MASSACHUSETTS 02062-9106
• 617/329-4700
Amplitude Modulation of the AD9850 Direct Digital Synthesizer
by Richard Cushing, Applications Engineer
The voltage at the RSET pin is part of the feedback loop of
the (internal) control amplifier and must not be externally altered. The RSET modification circuit, Figure 2,
uses Q1 as a variable resistor and R2 as a fixed current
limit resistor in case Q1 is allowed to turn on too much.
C1 inhibits noise when Q1 is operated near cutoff. R1
lowers the input impedance for additional noise prevention. The input voltage to Q1 required to fully modulate
the AD9850 output is approximately 1.5 volts p-p and
is dc offset by approximately 2.3 volts, see Figure 4.
This application note will offer a method to voltage control or amplitude modulate the output current of the
AD9850 DDS using an enhancement mode MOSFET to
replace the fixed RSET resistor; and a broadband RF
transformer to combine the DDS DAC outputs to produce a symmetrical AM modulation envelope. Modulation with reasonable linearity is possible at rates
exceeding 50 kHz. The AD9850 DDS output current
(20 mA maximum) is normally set with a fixed resistor
from the RSET (Pin 12) input to ground. The DAC outputs
are unipolar and complementary (180 degrees out of
phase) of each other.
DC OR AUDIO
INPUT
D
Q1
2N7000*
G
Use of an enhancement mode MOSFET is in keeping
with the single supply concept. The design is simple and
parts count minimal. Combining the IOUT and IOUTB DAC
outputs in a center-tapped broadband RF transformer
produces a symmetrical modulation envelope as seen in
Figure 1(A). Figure 1(B) shows the effect of not combining the two outputs and simply observing one output—
asymmetrical amplitude modulation. The same signal
was used to modulate both configurations.
R1
50Ω
TO RSET
PIN 12
S
R2
1.5kΩ
*N-CHANNEL MOSFET
DIGI-KEY PART # 2N70000DICT-ND
Figure 2. RSET Modification
+1.1V
+0.55V
GND
C1
510pF
A
B
–0.55V
GND
Figure 1. Symmetrical (A) and asymmetrical (B) amplitude modulation envelopes
www.BDTIC.com/ADI
To IOUT
PIN 21
3
Presented below in Figure 4 are 10 kHz modulation envelopes and their associated input signals to the gate of
Q1.
This method of amplitude modulation presents an easy
solution to voltage control of the AD9850 output amplitude. Designers interested in controlling only a single
output can eliminate the transformer. Finally, those persons desiring digital control of the AD9850 DAC amplitude may wish to consider digital potentiometers in the
50 k ohm to 100 k ohm range.
T1-1T*
4
2
E2713–10–12/96
Figure 3 illustrates the combining of the DAC true and
complement outputs using a 50 kHz to 200 MHz broadband RF transformer. The transformer performs a 1:1
impedance and voltage transformation. The load resistance on the secondary winding, 50 ohms, is reflected
back to the primary. Since the transformer primary is
center-tapped to ground, each DAC output will see a
25 ohm load and develop a maximum of approximately
0.5 volts p-p (20 mA * 25 ohms = 0.5 V). The two DAC
outputs are summed and appear at the transformer secondary as approximately 1 V p-p.
50Ω
1
6
1:1
To IOUTB
PIN 20
*MINI-CIRCUITS BROADBAND
RF TRANSFORMER
200mV
/DIV
200mV
/DIV
200mV
/DIV
GND
GND
GND
+3V
+3V
+3V
500mV
/DIV
500mV
/DIV
500mV
/DIV
GND
GND
GND
Figure 4. 10 kHz Modulation Envelopes
www.BDTIC.com/ADI
–2–
PRINTED IN U.S.A.
Figure 3. Output Modification