* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download MAX44244/MAX44245/MAX44248 36V, Precision, Low-Power, 90µA, Single/Quad/Dual Op Amps General Description
Immunity-aware programming wikipedia , lookup
Pulse-width modulation wikipedia , lookup
Electrical substation wikipedia , lookup
Three-phase electric power wikipedia , lookup
History of electric power transmission wikipedia , lookup
Thermal runaway wikipedia , lookup
Power inverter wikipedia , lookup
Electrical ballast wikipedia , lookup
Two-port network wikipedia , lookup
Power MOSFET wikipedia , lookup
Integrating ADC wikipedia , lookup
Current source wikipedia , lookup
Variable-frequency drive wikipedia , lookup
Analog-to-digital converter wikipedia , lookup
Stray voltage wikipedia , lookup
Surge protector wikipedia , lookup
Power electronics wikipedia , lookup
Voltage regulator wikipedia , lookup
Voltage optimisation wikipedia , lookup
Alternating current wikipedia , lookup
Buck converter wikipedia , lookup
Resistive opto-isolator wikipedia , lookup
Schmitt trigger wikipedia , lookup
Current mirror wikipedia , lookup
Mains electricity wikipedia , lookup
EVALUATION KIT AVAILABLE MAX44244/MAX44245/MAX44248 36V, Precision, Low-Power, 90µA, Single/Quad/Dual Op Amps General Description The MAX44244/MAX44245/MAX44248 family of parts provide ultra-precision, low-noise, zero-drift single/quad/ dual operational amplifiers featuring very low-power operation with a wide supply range. The devices incorporate a patented auto-zero circuit that constantly measures and compensates the input offset to eliminate drift over time and temperature as well as the effect of 1/f noise. These devices also feature integrated EMI filters to reduce high-frequency signal demodulation on the output. The op amps operate from either a single 2.7V to 36V supply or dual ±1.35V to ±18V supply. The devices are unity-gain stable with a 1MHz gain-bandwidth product and a low 90µA supply current per amplifier. The low offset and noise specifications and high supply range make the devices ideal for sensor interfaces and transmitters. The devices are available in FMAXM, SO, SOT23, and TSSOP packages and are specified over the -40NC to +125NC automotive operating temperature range. Applications Features S Very Low Input Voltage Offset 7.5µV (max) S Low 30nV/NC Offset Drift (max) S Low 90µA Quiescent Current per Amplifier S Low Input Noise 50nV/√Hz at 1kHz 0.5µVP-P from 0.1Hz to 10Hz S 1MHz Gain-Bandwidth Product S EMI Suppression Circuitry S Rail-to-Rail Output S 2.7V to 36V Supply Range S µMAX, SO, SOT23, TSSOP packages Ordering Information appears at end of data sheet. For related parts and recommended products to use with this part, refer to www.maximintegrated.com/MAX44244.related. Sensors Interfaces 4-20mA and 0 to10V Transmitters PLC Analog I/O Modules µMAX is a registered trademark of Maxim Integrated Products, Inc. Weight Scales Portable Medical Devices Typical Operating Circuit LP+ VREF MAX6033 REF ISIG (4-20mA) R1 MAX5216 DAC R2 MAX44244 R3 RSENSE LP- For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maximintegrated.com. www.BDTIC.com/maxim 19-6367; Rev 2; 9/13 MAX44244/MAX44245/MAX44248 36V, Precision, Low-Power, 90µA, Single/Quad/Dual Op Amps ABSOLUTE MAXIMUM RATINGS VDD to VSS.............................................................-0.3V to +40V Common-Mode Input Voltage.........(VSS - 0.3V) to (VDD + 0.3V) Differential Input Voltage IN_+, IN_- .......................................6V Continuous Input Current Into Any Pin............................ Q20mA Output Voltage to VSS (OUT_).................– 0.3V to (VDD + 0.3V) Output Short-Circuit Duration (OUT_)...................................... 1s Operating Temperature Range......................... -40NC to +125NC Storage Temperature........................................ -65NC to +150NC Junction Temperature......................................................+150NC Lead Temperature (soldering, 10s).................................+300NC Soldering Temperature (reflow).......................................+260NC Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. PACKAGE THERMAL CHARACTERISTICS (Note 1) SO-8 Junction-to-Ambient Thermal Resistance (BJA).........132NC/W Junction-to-Case Thermal Resistance (BJC)................38NC/W SO-14 TSSOP Junction-to-Ambient Thermal Resistance (BJA).........110NC/W Junction-to-Case Thermal Resistance (BJC)................30NC/W FMAX Junction-to-Ambient Thermal Resistance (BJA).........120NC/W Junction-to-Case Thermal Resistance (BJC)................37NC/W SOT23 Junction-to-Ambient Thermal Resistance (BJA)......324.3NC/W Junction-to-Case Thermal Resistance (BJC)................82NC/W Junction-to-Ambient Thermal Resistance (BJA)......206.3NC/W Junction-to-Case Thermal Resistance (BJC)................42NC/W Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial. ELECTRICAL CHARACTERISTICS (VDD = 10V, VSS = 0V, VIN+ = VIN- = VDD/2, RL = 5kI to VDD/2, TA = -40NC to +125NC, unless otherwise noted. Typical values are at +25NC.) (Note 2) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS 36 V POWER SUPPLY Supply Voltage Range Power-Supply Rejection Ratio (Note 3) VDD PSRR Quiescent Current Per Amplifier (MAX4244 Only) IDD Quiescent Current Per Amplifier (MAX44245/MAX44248 Only) IDD Guaranteed by PSRR 2.7 TA = +25NC, VIN+ = VIN- = VDD/2 - 1V 140 -40NC < TA < +125NC 133 TA = +25NC 148 dB 100 160 -40NC < TA < +125NC 190 TA = +25NC 90 130 -40NC < TA < +125NC 145 FA FA DC SPECIFICATIONS Input Common-Mode Range VCM Guaranteed by CMRR test VSS 0.05 VDD 1.5 Maxim Integrated www.BDTIC.com/maxim V 2 MAX44244/MAX44245/MAX44248 36V, Precision, Low-Power, 90µA, Single/Quad/Dual Op Amps ELECTRICAL CHARACTERISTICS (continued) (VDD = 10V, VSS = 0V, VIN+ = VIN- = VDD/2, RL = 5kI to VDD/2, TA = -40NC to +125NC, unless otherwise noted. Typical values are at +25NC.) (Note 2) PARAMETER Common-Mode Rejection Ratio (Note 3) Input Offset Voltage (Note 3) Input Offset Voltage Drift (Note 3) Input Bias Current (Note 3) Input Offset Current (Note 3) Open-Loop Gain (Note 3) SYMBOL CMRR VOS MIN TYP TA = +25NC, VCM = VSS - 0.05V to VDD 1.5V 126 130 -40NC < TA < +125NC, VCM = VSS - 0.05V to VDD - 1.5V 120 IB IOS AVOL TA = +25NC 2 VOUT VSS 7.5 -40NC < TA < +125NC 10 TA = +25NC 10 30 150 300 -40NC < TA < +125NC 700 TA = +25NC 300 -40NC < TA < +125NC VSS + 0.5V P VOUT P VDD 0.5V 600 1400 TA = +25NC 140 -40NC < TA < +125NC 135 To VDD or VSS, noncontinuous VDD VOUT MAX UNITS dB TC VOS Output Short-Circuit Current Output Voltage Swing CONDITIONS FV nV/NC pA pA 150 dB 40 mA TA = +25NC 80 -40NC < TA < +125NC 110 TA = +25NC 50 -40NC < TA < +125NC 75 mV AC SPECIFICATIONS Input Voltage-Noise Density eN Input Voltage Noise Input Current-Noise Density Gain-Bandwidth Product iN f = 1kHz 50 nV/√Hz 0.1Hz < f < 10Hz 500 nVP-P f = 1kHz 0.1 pA/√Hz 1 MHz GBW Slew Rate SR AV = 1V/V, VOUT = 2VP-P 0.7 V/Fs Capacitive Loading CL No sustained oscillation, AV = 1V/V 400 pF THD+N VOUT = 2VP-P, AV = +1V/V, f = 1kHz -100 dB Total Harmonic Distortion Plus Noise EMI Rejection Ratio EMIRR VRF_PEAK = 100mV f = 400MHz 75 f = 900MHz 78 f = 1800MHz 80 f = 2400MHz 90 Maxim Integrated www.BDTIC.com/maxim dB 3 MAX44244/MAX44245/MAX44248 36V, Precision, Low-Power, 90µA, Single/Quad/Dual Op Amps ELECTRICAL CHARACTERISTICS (VDD = 30V, VSS = 0V, VIN+ = VIN- = VDD/2, RL = 5kI to VDD/2, TA = -40NC to +125NC, unless otherwise noted. Typical values are at +25NC.) (Note 2) PARAMETER SYMBOL CONDITIONS MIN TYP MAX 100 160 UNITS POWER SUPPLY Quiescent Current Per Amplifier (MAX44244 Only) IDD Quiescent Current Per Amplifier (MAX44245/MAX44248 Only) IDD TA = +25NC -40NC < TA < +125NC 190 TA = +25NC 90 -40NC < TA < +125NC 130 145 FA FA DC SPECIFICATIONS Input Common-Mode Range Common-Mode Rejection Ratio (Note 3) Input Offset Voltage (Note 3) Input Offset Voltage Drift (Note 3) Input Bias Current (Note 3) Input Offset Current (Note 3) Open-Loop Gain (Note 3) VCM CMRR VOS VSS 0.05 TA = +25NC, VCM = VSS - 0.05V to VDD 1.5V 130 -40NC < TA < +125NC, VCM = VSS - 0.05V to VDD - 1.5V 126 IB IOS AVOL VDD 1.5 140 TA = +25NC 2 7.5 -40NC < TA < +125NC 10 TA = +25NC 10 30 150 300 -40NC < TA < +125NC 700 TA = +25NC 300 -40NC < TA < +125NC VSS + 0.5V P VOUT P VDD - 0.5V 600 1400 TA = +25NC 146 -40NC < TA < +125NC 140 To VDD or VSS, noncontinuous V dB TC VOS Output Short-Circuit Current Output Voltage Swing Guaranteed by CMRR test 150 FV nV/°C pA pA dB 40 mA VDD VOUT TA = +25NC 200 -40NC < TA < +125NC 270 VOUT VSS TA = +25NC 140 -40NC < TA < +125NC 220 mV AC SPECIFICATIONS Input Voltage-Noise Density eN Input Voltage Noise Input Current-Noise Density Gain-Bandwidth Product iN GBW f = 1kHz 50 0.1Hz < f < 10Hz 500 nVP-P f = 1kHz 0.1 pA/√Hz 1 MHz Maxim Integrated www.BDTIC.com/maxim nV/√Hz 4 MAX44244/MAX44245/MAX44248 36V, Precision, Low-Power, 90µA, Single/Quad/Dual Op Amps ELECTRICAL CHARACTERISTICS (continued) (VDD = 30V, VSS = 0V, VIN+ = VIN- = VDD/2, RL = 5kI to VDD/2, TA = -40NC to +125NC, unless otherwise noted. Typical values are at +25NC.) (Note 2) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS Slew Rate SR AV = 1V/V, VOUT = 2VP-P 0.7 V/Fs Capacitive Loading CL No sustained oscillation, AV = 1V/V 400 pF THD+N VOUT = 2VP-P, AV = +1V/V, f = 1kHz -100 dB Total Harmonic Distortion Plus Noise EMI Rejection Ratio VRF_PEAK = 100mV EMIRR f = 400MHz 75 f = 900MHz 78 f = 1800MHz 80 f = 2400MHz 90 dB Note 2: All devices are 100% production tested at TA = +25NC. Temperature limits are guaranteed by design. Note 3: Guaranteed by design. Note 4: At IN+ and IN-. Defined as 20log (VRF_PEAK/δVOS). Typical Operating Characteristics (TA = =+25°C, otherwise (V 10V, Vunless VIN+ = Vnoted.) DD SS = 0V, IN- = VDD/2, RL = 5kω to VDD/2. Typical values are at TA = +25°C.) OCCURANCE (%) 30 30 25 20 15 25 20 15 10 10 0 0.5 1.0 1.5 2.0 2.5 3.0 INPUT OFFSET VOLTAGE (µV) 3.5 94 92 90 88 86 82 0 0 96 84 5 5 98 SUPPLY CURRENT (µA) 35 100 MAX44248 toc02 40 OCCURANCE (%) 35 MAX44248 toc01 45 SUPPLY CURRENT vs. SUPPLY VOLTAGE INPUT OFFSET VOLTAGE DRIFT MAX44248 toc03 INPUT OFFSET VOLTAGE HISTOGRAM 4 5 6 7 8 9 10 11 12 13 14 INPUT OFFSET VOLTAGE DRIFT (nV/°C) 80 0 10 20 30 40 SUPPLY VOLTAGE (V) Maxim Integrated www.BDTIC.com/maxim 5 MAX44244/MAX44245/MAX44248 36V, Precision, Low-Power, 90µA, Single/Quad/Dual Op Amps Typical Operating Characteristics (continued) (VDD = 10V, VSS = 0V, VIN+ = VIN- = VDD/2, RL = 5kω to VDD/2. Typical values are at TA = +25°C.) INPUT OFFSET VOLTAGE vs. COMMON-MODE VOLTAGE 94 92 90 88 86 2 OFFSET VOLTAGE (µV) 1 OFFSET VOLTAGE (µV) 96 3 MAX44248 toc05 98 SUPPLY CURRENT (µA) 2 MAX44248 toc04 100 INPUT OFFSET VOLTAGE VS. TEMPERATURE 0 -1 -2 MAX44248 toc06 SUPPLY CURRENT vs. TEMPERATURE 1 0 -1 -2 -3 84 -3 -4 82 -5 -4 80 0 25 50 75 100 -6 125 0 2 4 -25 140 0 25 50 75 TEMPERATURE (°C) 100 125 INPUT BIAS CURRENT vs. TEMPERATURE MAX44248 toc07 160 120 100 80 60 40 800 600 400 200 0 -200 20 -400 0 2 4 6 8 -50 10 -25 0 25 50 75 100 COMMON-MODE VOLTAGE (V) TEMPERATURE (°C) COMMON-MODE REJECTION RATIO vs. FREQUENCY COMMON-MODE REJECTION RATIO vs. TEMPERATURE -100 MAX44248 toc09 0 -20 125 MAX44248 toc10 0 -105 -110 CMRR (dB) -40 CMRR (dB) -50 6 INPUT BIAS CURRENT COMMON-MODE VOLTAGE 180 INPUT BIAS CURRENT (pA) -2 COMMON-MODE VOLTAGE (V) TEMPERATURE (°C) VS. -4 MAX44248 toc08 -25 INPUT BIAS CURRENT (pA) -50 -60 -80 -115 -120 -100 -125 -120 -130 -135 -140 10 100 1k 10k FREQUENCY (Hz) 100k 1M -50 -25 0 25 50 75 100 125 TEMPERATURE (°C) Maxim Integrated www.BDTIC.com/maxim 6 MAX44244/MAX44245/MAX44248 36V, Precision, Low-Power, 90µA, Single/Quad/Dual Op Amps Typical Operating Characteristics (continued) (VDD = 10V, VSS = 0V, VIN+ = VIN- = VDD/2, RL = 5kω to VDD/2. Typical values are at TA = +25°C.) OUTPUT VOLTAGE HIGH vs. TEMPERATURE -40 60 MAX44248 toc12 -20 70 50 -60 -80 -100 VOUT - VSS (mV) 60 VDD - VOUT (mV) PSRR (dB) 80 MAX44248 toc11 0 OUTPUT VOLTAGE LOW vs. TEMPERATURE MAX44248 toc13 POWER-SUPPLY REJECTION RATIO vs. FREQUENCY 50 40 30 -120 20 -140 10 100 10 1k 10k 100k 1M -25 0 25 50 75 100 -50 125 -25 0 TEMPERATURE (°C) 50 75 100 125 OUTPUT VOLTAGE LOW vs. SINK CURRENT VOUT - VSS (mV) 100 10 1 MAX44248 toc15 1000 MAX44248 toc14 1000 25 TEMPERATURE (°C) OUTPUT VOLTAGE HIGH vs. SOURCE CURRENT VDD - VOUT (mV) 20 0 -50 FREQUENCY (Hz) 100 10 1 0.1 1 10 0.1 SOURCE CURRENT (mA) 10 INPUT VOLTAGE 0.1Hz TO 10Hz NOISE MAX44248 toc17 MAX44248 toc16 200 1 SINK CURRENT (mA) INPUT VOLTAGE NOISE vs. FREQUENCY 180 INPUT VOLTAGE NOISE (nV/√Hz) 30 10 0 -160 40 160 140 120 400nV/div 100 80 60 40 20 0 10 100 1k 10k 100k 1s/div FREQUENCY (Hz) Maxim Integrated www.BDTIC.com/maxim 7 MAX44244/MAX44245/MAX44248 36V, Precision, Low-Power, 90µA, Single/Quad/Dual Op Amps Typical Operating Characteristics (continued) (VDD = 10V, VSS = 0V, VIN+ = VIN- = VDD/2, RL = 5kω to VDD/2. Typical values are at TA = +25°C.) INPUT CURRENT NOISE vs. FREQUENCY 7 6 5 4 3 2 1 100 80 60 40 20 10 100 1k 10k 120 100 80 60 40 20 0 0 -20 -20 -40 -40 0 0.1 100k MAX44248 toc20 120 LARGE-SIGNAL GAIN (dB) 8 140 MAX44248 toc19 INPUT-CURRENT NOISE (pA/√Hz) 9 SMALL-SIGNAL GAIN (dB) MAX44248 toc18 10 LARGE-SIGNAL GAIN vs. FREQUENCY SMALL-SIGNAL GAIN vs. FREQUENCY 140 1 10 100 1k 10k 100k 1M 0.1 1 10 FREQUENCY (Hz) 100 1k 10k 1M LARGE-SIGNAL STEP RESPONSE SMALL-SIGNAL STEP RESPONSE MAX44248 toc22 MAX44248 toc21 VIN 100mV/div VIN 2V/div VOUT 50mV/div VOUT 500mV/div 4µs/div 4µs/div TOTAL HARMONIC DISTORTION vs. FREQUENCY POWER-UP TIME MAX44248 toc23 MAX44248 toc24 0 VDD 10V/div -20 THD (dB) -40 VOUT 2V/div 100k FREQUENCY (Hz) FREQUENCY (Hz) RLOAD = 1kI -60 RLOAD = 600I -80 -100 -120 RLOAD = 5kI -140 20µs/div 10 100 1k 10k 100k FREQUENCY (Hz) Maxim Integrated www.BDTIC.com/maxim 8 MAX44244/MAX44245/MAX44248 36V, Precision, Low-Power, 90µA, Single/Quad/Dual Op Amps Typical Operating Characteristics (continued) (VDD = 10V, VSS = 0V, VIN+ = VIN- = VDD/2, RL = 5kω to VDD/2. Typical values are at TA = +25°C.) OUTPUT STABILITY vs. CAPACITIVE LOAD OUTPUT STABILITY vs. ISOLATION RESISTANCE 100 STABLE 10 MAX44248 toc26 MAX44248 toc25 UNSTABLE 1k 10k ISOLATION RESISTANCE (I) RESISTIVE LOAD (I) 10k 1k STABLE 100 1 UNSTABLE 10 1 100 1000 10,000 100,000 100 1000 CAPACITIVE LOAD (pF) 100,000 OUTPUT IMPEDANCE vs. FREQUENCY CROSSTALK vs. FREQUENCY MAX44248 toc27 -20 100 MAX44248 toc28 0 90 -40 OUTPUT IMPEDANCE (I) CROSSTALK (dB) 10,000 CAPACITIVE LOAD (pF) -60 -80 -100 80 70 60 50 40 30 20 -120 10 -140 100 1k 10k 100k 0 1M 1k 100 FREQUENCY (Hz) 10k 100k 1M FREQUENCY (Hz) EMIRR vs. FREQUENCY MAX44248 toc29 120 100 EMIRR (dB) 80 60 40 20 0 10 100 1,000 10,000 FREQUENCY (MHz) Maxim Integrated www.BDTIC.com/maxim 9 MAX44244/MAX44245/MAX44248 36V, Precision, Low-Power, 90µA, Single/Quad/Dual Op Amps Pin Configurations TOP VIEW + OUTA 1 5 VDD MAX44244 VSS 2 INA+ 3 4 N.C. 1 INA- 2 INA+ 3 VSS 4 + 8 MAX44244 INA- N.C. 7 VDD 6 OUTA 5 N.C. µMAX SOT23 OUTA 1 INA- 2 INA+ 3 + MAX44245 14 OUTD 13 IND- 12 IND+ VDD 4 11 VSS INB+ 5 10 INC+ INB- 6 9 INC- OUTB 7 8 OUTC + OUTA 1 INA- 2 13 IND12 IND+ INA+ 3 MAX44245 VDD 4 INA- 1 2 + 10 INC+ INB- 6 9 INC- OUTB 7 8 OUTC SO-14 8 MAX44248 11 VSS INB+ 5 TSSOP OUTA 14 OUTD 7 VDD OUTB INA+ 3 6 INB- VSS 4 5 INB+ OUTA 1 INA- 2 INA+ 3 VSS 4 + 8 MAX44248 VDD 7 OUTB 6 INB- 5 INB+ µMAX SO-8 Maxim Integrated www.BDTIC.com/maxim 10 MAX44244/MAX44245/MAX44248 36V, Precision, Low-Power, 90µA, Single/Quad/Dual Op Amps Pin Description PIN MAX44244 MAX44245 MAX44248 NAME FUNCTION SOT23 µMAX SO-14 TSSOP SO-8 µMAX 1 6 1 1 1 1 2 4 11 11 4 4 VSS Negative Supply Voltage 3 3 3 3 3 3 INA+ Channel A Positive Input OUTA Channel A Output 4 2 2 2 2 2 INA- Channel A Negative Input 5 7 4 4 8 8 VDD Positive Supply Voltage — — 5 5 5 5 INB+ Channel B Positive Input — — 6 6 6 6 INB- — — 7 7 7 7 OUTB Channel B Output Channel B Negative Input Channel C Output — — 8 8 — — OUTC — — 9 9 — — INC- Channel C Negative Input — — 10 10 — — INC+ Channel C Positive Input — — 12 12 — — IND+ Channel D Positive Input — — 13 13 — — IND- Channel D Negative Input — — 14 14 — — OUTD — 1, 5, 8 — — — — N.C. Channel D Output No Connection. Not internally connected. Detailed Description Applications Information The MAX44244/MAX44245/MAX44248 are high-precision amplifiers with less than 2FV (typ) input-referred offset and low input voltage-noise density at 10Hz. 1/f noise, in fact, is eliminated to improve the performance in low-frequency applications. These characteristics are achieved through an auto-zeroing technique that cancels the input offset voltage and 1/f noise of the amplifier. The devices feature ultra-high precision operational amplifiers with a high supply voltage range designed for load cell, medical instrumentation, and precision instrument applications. External Noise Suppression in EMI Form These devices have input EMI filters to prevent effects of radio frequency interference on the output. The EMI filters comprise passive devices that present significant higher impedance to higher frequency signals. See the EMIRR vs. Frequency graph in the Typical Operating Characteristics section for details. High Supply Voltage Range The devices feature 90µA current consumption per channel and a voltage supply range from either 2.7V to 36V single supply or ±1.35V to ±18V split supply. 4–20mA Current-Loop Communication Industrial environments typically have a large amount of broadcast electromagnetic interference (EMI) from highvoltage transients and switching motors. This combined with long cables for sensor communication leads to high-voltage noise on communication lines. Current-Loop communication is resistant to this noise because the EMI induced current is low. This configuration also allows for low-power sensor applications to be powered from the communication lines. The Typical Operating Circuit shows how the device can be used to make a current loop driver. The circuit uses low-power components such as the MAX44244 op amp, the 16-bit MAX5216 DAC, and the high-precision 60µA-only MAX6033 reference. In this Maxim Integrated www.BDTIC.com/maxim 11 MAX44244/MAX44245/MAX44248 36V, Precision, Low-Power, 90µA, Single/Quad/Dual Op Amps circuit, both the DAC and the reference are referred to the local ground. The MAX44244 op-amp inputs are capable of swinging to the negative supply (which is the local ground in this case). R3 acts as a current mirror with RSENSE. Therefore, if RSENSE = 50Ω (i.e. 20mA will drop 1V) and if the current through R3 is 10μA when IOUT is 20mA (0.05% error) then R3 = 100kΩ. R1 is chosen along with the reference voltage to provide the 4mA offset. R2 = 512kΩ for 20mA full scale or R2 = 614kΩ for 20% overrange. RSENSE is ratiometric with R3, R1 independently sets the offset current and R2 independently sets the DAC scaling. Driving High-Performance ADCs The MAX44244/MAX44245/MAX44248’s low input offset voltage and low noise make these amplifiers ideal for ADC buffering. Weight scale applications require a lownoise, precision amplifier in front of an ADC. Figure 1 details an example of a load cell and amplifier driven from the same 5V supply, along with a 16-bit delta sigma ADC such as the MAX11205. The MAX11205 is an ultra-low-power (< 300FA, max active current), high-resolution, serial output ADC. It provides the highest resolution per unit power in the industry and is optimized for applications that require very high dynamic range with low power such as sensors on a 4–20mA industrial control loop. The devices provide a high-accuracy internal oscillator that requires no external components. Layout Guidelines The MAX44244/MAX44245/MAX44248 feature ultra-low input offset voltage and noise. Therefore, to get optimum performance follow the layout guidelines. Avoid temperature tradients at the junction of two dissimilar metals. The most common dissimilar metals used on a PCB are solder-to-component lead and solder-to-board trace. Dissimilar metals create a local thermocouple. A variation in temperature across the board can cause an additional offset due to Seebeck effect at the solder junctions. To minimize the Seebeck effect, place the amplifier away from potential heat sources on the board, if possible. Orient the resistors such that both the ends are heated equally. It is a good practice to match the input signal path to ensure that the type and number of thermoelectric juntions remain the same. For example, consider using dummy 0ω resistors oriented in such a way that the thermoelectric source, due to the real resistors in the signal path, are cancelled. It is recommended to flood the PCB with ground plane. The ground plane ensures that heat is distributed uniformly reducing the potential offset voltage degradation due to Seebeck effect. 5V 5V ½ MAX44248 AMP A VDD 5V RF VIN+ RG VDD MAX11205 RF VIN- OUTPUT MICRO CONTROLLER VSS AMP B ½ MAX44248 Figure 1. Weight Application Maxim Integrated www.BDTIC.com/maxim 12 MAX44244/MAX44245/MAX44248 36V, Precision, Low-Power, 90µA, Single/Quad/Dual Op Amps Chip Information Package Information Ordering Information For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. PROCESS: BiCMOS PART TEMP RANGE PINPACKAGE TOP MARK PACKAGE TYPE PACKAGE CODE OUTLINE NO. LAND PATTERN NO. 5 SOT23 U5+1 21-0057 90-0174 MAX44244AUK+ -40°C to +125°C 5 SOT23 AFMR MAX44244AUA+ -40°C to +125°C 8 µMAX — 8 SO S8+4 21-0041 90-0096 MAX44245ASD+ -40°C to +125°C 14 SO — 8 µMAX U8+1 21-0036 90-0092 MAX44245AUD+ -40°C to +125°C 14 TSSOP — 14 SO S14M+4 21-0041 90-0112 MAX44248AUA+ -40°C to +125°C 8 µMAX — 14 TSSOP U14M-1 21-0066 90-0113 8 SO — MAX44248ASA+ -40°C to +125°C +Denotes a lead(Pb)-free/RoHS-compliant package. Maxim Integrated www.BDTIC.com/maxim 13 MAX44244/MAX44245/MAX44248 36V, Precision, Low-Power, 90µA, Single/Quad/Dual Op Amps Revision History REVISION NUMBER REVISION DATE 0 7/12 Initial release 1 6/13 Added the MAX44244/MAX44245 to data sheet. Updated the Electrical Characteristics, Absolute Maximum Ratings, Pin Description, and Pin Configurations. 2 9/13 Released the MAX44244 for introduction. Revised the Electrical Characteristics DESCRIPTION PAGES CHANGED — 1–13 2–5, 13 Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance. Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000 © 2013 Maxim Integrated 14 The Maxim logo and Maxim Integrated are trademarks of Maxim Integrated Products, Inc. www.BDTIC.com/maxim